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ARTICLE INFO 
 

ABSTRACT 

  Contamination of groundwater and surface water with arsenic (Asic) has become emerging health 
and environmental problem around the world. This problem has received significant attention 
amongst scientists for the development of new adsorbents to remediate Asic -contaminated water. 
The ability of the immobilized powdered eggshell (Poes), as adsorbent, to remove Asic was studied 
under batch conditions. Equilibrium data were analysed using non-linear and linearized two-
parameter adsorption isotherms models (Langmuir, Freundlich, Elovich, Flory–Huggins, Temkin, 
Frenkel- Hasley- Hill; Langmuir- Vageler, Hill-de Boer, Kiselev, Fowler- Guggenheim, Dubinin – 
Radushkevich, Jovanovic, Harkins–Jura and Halsey). The performance of adsorption equilibrium 
isotherm models was evaluated statistically using the following analysis of variance (ANOVA), model 
of' selection criterion (MSC), Coefficient of Determination (CD), Correlation coefficient (R) and Akaike 
Information Criterion (AIC). The study revealed that for non-linear equilibrium isotherm models, 
Freundlich (0.986 and 3.906) > Fowler—Guggenheim (0.996 and 5.176)  and Hasley (0.986 and 
3.906) performed well in predicting experimental data-based on the magnitudes of R and MSC. The 
linearized adsorption equilibrium isotherm models, Dubinin – Radushkevich (0.993 and 4.621) < 
Temkin (0.994 and 4.701) < Kiselev (0.9999 and 8.856). These three models are the best isotherm 
models for Asic adsorption onto Poes. It was concluded that Poes particles contain numerous 
materials that aid Asic adsorption. Based on the performance indicators and to ensure reliable results 
of adsorption equilibrium data analysis through the adsorption isotherm models, it is necessary that 
these data sets should be evaluated by both non-linear and linear regression analyses. 
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1. Introduction 

Many systems have been established for the Asic removal 
from raw water and industrial wastewater (Vishali and 
Mullai, 2016). The techniques include electrochemical 
degradation, ion exchange, adsorption, coagulation and 
flocculation, advanced oxidation, membrane filtration, and 
many others (Vishali and Mullai, 2016; Shakoor et al., 
2018; Wang et al., 2023a). With the exemption of 
adsorption, the other practices have some disadvantages 
which include higher sludge formation, higher operational 
cost, or ineffectiveness of a broad range of Asic removal 
are identified in the above techniques, making adsorption 
among the best alternative technology (Attar et al., 2018; 
Adekunbi et al., 2019; Suwannahong et al., 2021; Guo et 
al., 2023, Wang et al., 2023b). Adsorption techniques are 
capable of removing pollutants from raw water and 

industrial wastewater (El-Khaiary and Malash, 2011; Al-
Ghouti and Da’ana, 2020; El Hammari et al., 2023). The 
adsorption technique has many advantages as being cost-
effective, easy to operate, simple mechanism, and 
insensitive to pollutants (Vishali and Mullai, 2016; Shakoor 
et al., 2018; Al-Ghouti and Da’ana, 2020; Liu et al., 
2023a). Many researchers have reported different types of 
adsorbents for the removal of pollutants from aqueous 
solutions. These adsorbents include commercial activated 
carbon, carbon material made from solid wastes and coal-
based sorbents like rice husk, waste newspaper, date pits, 
coir pith, sugarcane bagasse, neem sawdust, orange and 
cassava peel, banana pith, cotton waste, natural materials 
like clay, glass powder, zeolite, and silica (Vishali and 
Mullai, 2016; Shakoor et al., 2018; Dada et al., 2019; 

2021). Biomasses as adsorbents include bacteria, fungi, 
and yeast, both living and dead cells are used as 
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adsorbents for the treatment of raw water and industrial 
wastewater. Researchers have observed in their studies 
the capacity of the adsorbents to remove Asic from surface 
and groundwater (Shakoor et al., 2018; Attar et al., 2018; 
Lopez-Luna et al., 2019). In applications, equilibrium 
isotherms experiments are essential tools in use for 
assessing the performance of new adsorbents or 
applications of materials in surface and groundwater 
treatment (Daus et al., 2004; Singh and Pant, 2004, Shih, 
2005, El-Khaiary and Malash, 2011; An et al., 2011; Millar 
et al., 2015; Analia et al., 2019; Al-Ghouti and Da’ana, 
2020; Outram et al., 2021). Equilibria data are often fitted 
to a range of mathematical models to interpret the removal 
behaviour of treatment media (El-Khaiary and Malash, 
2011; Millar et al., 2015; Kumar and Sivanesan, 2006; Al-
Ghouti and Da’ana, 2020; Outram et al., 2021 ). Figure 1 
presents some of the adsorption equilibrium isotherms 
models and their categories based on the number of 
variables in the equation. One of the principal functions of 
isotherm equilibrium and kinetics modelling is to estimate 
the maximum adsorbate loading (Millar et al., 2015; El-
Khaiary and Malash, 2011; Al-Ghouti and Da’ana, 2020; 
Outram et al., 2021). The adsorbate loading offers 

researchers and engineers a means of comparing the 
differences between experimental situations, water 
quantity and quality, and materials with regard to Asic 
removal performance. The problem with this method of 
performance evaluation is that the loading estimates are 
susceptible to errors that originated from mathematical 
factors and experimental design (Millar et al., 2015; El-
Khaiary and Malash, 2011; Al-Ghouti and Da’ana, 2020; 
Outram et al., 2021). The uncertainty of these estimates is 
rarely assessed or acknowledged in the majority of 
published literature. Furthermore, the impacts of 
experimental design, such as repeats and equipment 
selection, on loading estimates are not quantified. 
Factually, batch adsorption equilibrium isotherms 
experiments were interpreted through non-linearized and 
linearized expressions of the appropriate adsorption or ion 
exchange models. A deficiency of computing facilities was 
the initial primary reason for the derivation of linearized 
adsorption models, yet nowadays numerous publications 
still utilize this method to contempt the accessibility of 
powerful computational services. Millar et al. (2015) and 
Mohammad et al., (2019; 2020) demonstrated that the 
linearized approach introduces inaccuracies in the fitted 
models, whereby lower goodness of fit and overestimated 
loading and constant values were observed. El-Khairy and 
Malash (2011) emphasised the incorrectness of 
linearizing adsorption equilibrium isotherm models due to 

deviations in the error structure of the data. Several 
documents illustrated the variation in outcomes between 
three linearized forms of the Langmuir adsorption model 
using a single set of sorption data (Hamadaoui and 
Naffrechoux 2007; El-Khaiary and Malash, 2011; Millar et 
al., 2015; Al-Ghouti and Da’ana, 2020; Outram et al., 2021 
). It has been recommended that the explanation of 
adsorption isotherm data through linearized and least 
squares analysis using GAUSS, Microsoft Excel Solver, 
Maple, Sigma Plot, Mathcad, Dataplot, MATLAB, Origin, 
Ardnial, Mathematica, Freemat, Flepro and SPSS 
functionality can significantly increase the robustness of 
equilibrium isotherm data analysis (Millar et al., 2015; El-
Khaiary and Malash, 2011; Adekunbi et al., 2019; Al-
Ghouti and Da’ana, 2020; Outram et al., 2021; 
Suwannahong et al., 2021). It has been reported that the 
linearized and least squares methods built into these 
computer functionalities were to solve several variables in 
the adsorption models (Song et al., 2006; Kumar et al., 
2004; Al-Ghouti and Da’ana, 2020; Outram et al., 2021). 
The focal focus of this paper is to establish the 
accurateness of linearized and non-linear 2-parameter 
adsorption equilibrium models with specific consideration 
to the utilization of least squares and Microsoft Excel 
Solver with a critical aim of attaining sustainable 
development goals 3 (good health and well-being, Liu et 
al., 2023b), 6 (clean water and sanitation); 14 (life below 

water) and 15 (life on land, Dalampira and Nastis, 2019). 

 

2. Materials and Methods 

2.1. Data Collection and analysis 

As a continuation of our previous research and studies 
(Obijole et al., 2022; Oke et al., 2008), powdered 
eggshells (Poes) were utilised as adsorbents for Asic 
removal or reduction from synthetic wastewaters. The 
microstructure was examined utilising a scanning electron 
microscope (Carl Zeiss Smart Evo 10). This was 
conducted with the aid of the backscattered electron 
detector, providing compositional contrast and the 
secondary electron detector providing topographical 
information. Energy Dispersive Spectroscopy (EDS) was 
used to confirm the elemental composition of identified 
phase while examinations were conducted in the high 
vacuum mode. Adsorption equilibrium isotherms were 
evaluated as follows (Amoko et al., 2015;  Obijole et al., 
2022; Adekunbi et al., 2019; Oke et al., 2008): 
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Figure 1. The significance of adsorption equilibrium isotherm models in use to establish performance of adsorbents 
(Adopted from Rangabhashiyam et al., 2014) 

 

  



 

 687 

 
V

M

CC
q e

e


 0

   
    (1) 

Where: qe is the adsorption capacity of the Poes at 
equilibrium (mg/g), C0 is initial the concentration of Asic in 
the solution (mg/l), Ce is the experimental concentration of 
Asic in the solution at equilibrium (mg/l), M is the mass of 
adsorbent (Poes) added (g) and V is the volume of 
prepared Asic solution used.  

The concentration of Asic in both raw and treated water 
samples was determined using procedures as stated in 
Standard Methods (APHA, 2015; van Loosdrecht et al., 
2016). Parameters of standard adsorption equilibrium 
isotherm models (mainly 2–parameters, Table 1) were 
evaluated using Microsoft Excel Solver (MES). These 
adsorption equilibrium isotherms models were utilised to 
compute adsorption capacity and the adsorption capacity 
was evaluated using standard statistical methods (Model 
Selection Criterion (MSC), Coefficient of Determination, 
Akaike Information Criterion, and Correlation Coefficient). 
Microsoft Excel Solver was utilised for the evaluation of 
the standard adsorption isotherm’s variables based on the 
accuracy and accessibility at no additional installation and 
operational costs. The procedure used for the Microsoft 
Excel solver can be summarized as follows (Adekunbi et 
al., 2019; Umaru et al., 2021; Suwannahong et al., 2021): 

a) Excel solver was added to Microsoft Excel, 

b) Target of the numerical analysis, 

  2

0p tq q 
, 

operation and changing cells were set, Where; qp 
is the experimental adsorption capacity and qt is 
the calculated adsorption capacity using the 
adsorption equilibrium isotherms; and  

c) Microsoft Excel Solver was allowed to iterate at 
200 iterations with 0.005 tolerance (Figure 2). 

MSC indicates higher accuracy, validity and a good fit of 
the methods. MSC was computed using equation (2) as 
follows (Amoko et al., 2015; Adekunbi et al., 2019; Umaru 
et al., 2021; Suwannahong et al., 2021): 
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      (2)  

Where, Yobsi is the Asic concentrations from the 

experimental study; obsY  is the average Asic 

concentrations from the experimental study; p is the total 
number of fixed parameters to be estimated in the 
methods; n is the total number of Asic concentrations 
calculated, and Ycali is the Asic concentration calculated 
using the methods. The coefficient of determination (CD) 
can be interpreted as the proportion of expected data 
variation that can be explained by the obtained data. 
Higher values of CD indicate higher accuracy, validity and 
good fitness of the device. CD and correlation coefficient 
can be computed as follows (Obijole et al., 2022; Adekunbi 
et al., 2019; Oke et al., 2008; Amoko et al., 2015): 
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The AIC was derived from the Information Criterion of 
Akaike (Idi et al. 2020). It allows a direct comparison 
among models with a different number of parameters. The 
AIC presents the information on a given set of parameter 
estimates by relating the coefficient of determination to the 
number of parameters. The AIC was determined using 
Equation (5) as follows (Obijole et al., 2022; Adekunbi et 
al., 2019; Oke et al., 2008; Amoko et al., 2015): 
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Figure 2. Flow Chart for using Microsoft Excel Solver in the computation of the Isotherm’s parameters 

 

 

Figure 3. Flow chart for the ANOVA of the data 

 



 

 689 

Table 1, Adsorption equilibrium isotherm models for single component aqueous solutions 

Model (References) Non-Linear Relationship Linear Relationship Parameters 

Langmuir (Hamdaoui and 
Naffrechous, 2014; Obijole et al., 
2022; Adekunbi et al., 2019; Oke et 
al., 2008; Garba, 2019; Ayawei et 
al., 2017; Olafadehan et al., 2022; 
Karri et al., 2017; Suwannahong et 
al., 2021) 

1
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Model (References) Non-Linear Relationship Linear Relationship Parameters 

Frenkel- Halsey- Hill (Hamdaoui 
and Naffrechous, 2014; Inyinbor et 
al., 2016; Olafadehan et al., 2022). 
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Harkin Jura- A (Rangabhashiyam et 
al., 2014; Olafadehan et al., 2022 ). 
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(Rangabhashiyam et al., 2014; 
Olafadehan et al., 2022 ). 
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3. Results and Discussion 

3.1. Surface Morphology and Pore variations of the 
Poes 

SEM micrographs were used to study the surface 
morphology and pore variations of the Poes adsorbent 
before the adsorption process, and its results are shown 
in Figure 4. Based on these figures, it can be observed 
that the surface of the applied Poes was porous with a large 
number of pores which makes it appropriate for the 
adsorption of Asic. Figures 4a, b, c and d show the results 
of the SEM. Figures 4a and 4b deliver an overview of the 
microstructural morphology of the Poes. These two figures 
also provide information on mixed homogeneity and the 
segregation of the micro-constituents. In these figures, a 
fair distribution of constituents is observed with a marked 
absence of segregation. However, the higher 
magnification micrograph (Figure 4b), revealed that small 
regions of agglomeration exist, where the border tends to 
form clumps. Also at higher magnification, the pore 
structure is apparent. The pores are evenly sized and 
permeate the entire structure. These pores extend the 
surface area of the Poes and also aid in the adsorption of 
impurities. Figure 4 provides topographical details and 
geometry. Figures 4c and 4d revealed the topology of the 
pores. It is apparent in these micrographs that the pore are 
interconnected and not blind pores. It also confirms the 
extensive nature of the pores. From these figures (4a, b 
and c), the particles of the Poes are discernable. The 
porosity is seen to be a result of particles stacking against 
each other. Figure 5 presents the results of the SEM and 
EDS spot A. These figures (Figures 5a, and 5b) revealed 
the major composition of the Poes. These figures revealed 
that the major compositions of the Poes are Aluminium 
(1.25 – 7.58 %), Calcium (3.7 – 10.12 %), Silicon (11.15 – 
25.62 %), Carbon (27.75%) and oxygen (48.75 – 58.13%) 
had the highest weight percentages (Figure 4 a, and 4b). 
The other elements in the adsorbent structure were Na, 
Mg, K, and Fe and their corresponding weight 
percentages. Figures 6a, 6b and 6c present SEM and 
EDS of eggshells from the literature. The figures revealed 
that the compositions of eggshells were similar but with 
different proportions elemental composition.  

3.2. Performance of the Adsorption Equilibrium 
Isotherms Model 

Tables 2 and 3 show the values of the non-linear and 
linearized 2 parameters adsorption equilibrium models, 
respectively. These two tables revealed that the values of 
the non-linear and linear 2-parameter adsorption 
equilibrium models were not the same for both non-linear 
and linear. This reflection is in agreement with literature 
such as Walsh and Diamond (1995); Farouq and Yousef 
(2005); Vasanth (2007) Subramanyam and Ashutosh 
(2012); Yaneva et al. (2013); Inyinbor et al. (2016); Atallah 
et al. (2020) and Olafadehan et al., (2022). Tables 2 and 
3 provide the values of the 2 parameters in the adsorption 
equilibrium isotherm models and the values of MSC, AIC, 
CD and R, respectively. Table 2 revealed that the values 
of the parameters for non-linear regression of the 
adsorption equilibrium isotherm models range from -0.001 
(Bhj for Harkin-Jura A) to 383.900 (bL for Langmuir). Table 
3 established that the values for non-linear regression of 
the adsorption equilibrium isotherm models range from -
229.552 (for W of Fowler-Guggenheim adsorption model) 
to 1.55 x 1013 ( for Xm of Dubinin-Redunshikevich 

adsorption model). These Tables revealed that the values 
of these adsorption equilibrium isotherm models were not 
the same for both non-linear and linearized regressions, 
which indicates that analysing adsorption equilibrium data 
must be done using both linearized and non-linear 
regressions to establish a better-fit model. It can be said 
here that the conventional technique of selection of the 
best-fit adsorption equilibrium models based on only the 
regression coefficient is not permanently the appropriate 
technique for choosing an adsorption equilibrium model 
for the adsorption equilibria. Based on any of these 
measures model of selection criterion, coefficient of 
determination, correlation coefficient and Akaike 
Information Criterion, better fits can be obtained for any 
adsorption equilibrium models by using both non-linear 
and linearized regressions adsorption equilibrium 
isotherm models.  

From these Tables (Tables 2 and 3) the lowest value of 
MSC came from Table 3(0.012, linearized form of 
Langmuir, Langmuir B) and the came from linearised 
Kiselev adsorption equilibrium model (8.896). Table 2 also 
revealed that some adsorption equilibrium models had 
negative values MSC, while Table 3 prevealed the non-
linear adsorption equilibrium models produced positive 
values of MSC. Negative values of adsorption equilibrium 
models indicated that care must be taken in the selection 
of such adsorption equilibrium models. In respect to AIC, 
the highest and the lowest can from Table 2, which is the 
linearised form of the adsorption equilibrium models. In 
the case of CD and R values, Table 3 revealed higher 
values than Table 2, which indicated that non- linear 
regression of the adsorption equilibrium models 
performed better than linerilized form the the models. 
Based on the statistical evaluations and values of CD and 
R, MSC, and AIC the performance and quality of the 
adsorption isotherm fittness can be organised in order of 
increasing the weightage of the correctness as follows 
(MSC, AIC, CD and R):  

a) Based on CD and R the quality of the isotherm fit can 
be organised in order of increasing weightage of the 
accuracy as follows:  

(i) In respect of non-linear regression of adsorption 
equilibrium isotherm models, the performance 
and quality of the fitness expressed as the values 
of CD and R revealed that Fowler- Guggenheim 
(0.992 and 0.996), which is greater than 
Freundlich (0.972 and 0.986) and Halsey- A 
(0.972 and 0.986) are greater than Langmuir – 
Vageler(0.926 and 0.962) is greater than Dubinin–
Radushkevich (0.876 and 0.936), which are 
greater than Hill-de Boer ( 0.864 and 0.930) is 
greater than Kiselev( 0.782 and 0.884) is greater 
than Temkin (0.751 and 0.867) is greater than 
Jovanoaic (0.518 and 0.719) is greater than 
Langmuir (0.498 and 0.706) is greater than Flory 
– Huggins (0.460 and 0.678) is greater than 
Elovich (0.415 and 0.644) is greater than Halsey 
C (-0.222 and 0.471) is greater than Harkins-Jura-
A (0.199 and 0.446) is greater than Halsey B (-
0.055 and 0.234) is greater than Harkins-Jura-B 
(0.022) is greater than Frenkel- Hasley- Hill (-
0.010 and 0.100). The details are as presented in 
Table 2. 
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(ii) In the case of linearised adsorption equilibrium 
isotherm models, the performance and quality of 
the isotherm fittness can be arranged in order of 
increasing weightage of the accuracy line with CD 
and R as follows: Kiselev (0.9998 and 0.9999) 
was greater than Harkins-Jura –A (0.993 and 
0.997), which was greater than Temkin(0.986 and 
0.994) was greater than Dubinin- Redunshikevich 
(0.986 and 0.931) was greater than Fowler-
Guggenheim (0.9615 and 0.9806) was greater 
than Langmuir A (0.921 and 0.960) greater than 
Langmuir C (0.912 and 0.955) was greater than 
Freundlich (0.902 and 0.950) was greater than 
Hasley B (0.891 and 0.944) was greater than 
Frenkel Hasley- Hill (0.851 and 0.923) was 
greater than Langmuir D (0.851 and 0.922) was 
greater than Hasley A(0.807 and 0.898) was 
greater than Elovich 0.756 and 0.8697) was 
greater than Langmuir B (0.698 and 0.835) was 
greater than Hasley C (0.449 and 0.670) was 
greater than Jovanoaic (0.367 and 0.606) was 
Langmuir – Vageler (-0.276 and 0.525) was 
greater than Harkins-Jura –B (-0.101 and 0.318) 
was greater than Flory – Huggins (0.086 and 
0.293) was greater than Langmuir E (0.047 and 
0.216) was greater than Hill-de Boer (0.0357 and 
0.1891). The details are presented in Table 3. 

b) Based on MSC the quality of the isotherm fit can be 
arranged in order of increasing weightage of the 
accuracy as follows:  

(i) In the case of non-linear regression of adsorption 
equilibrium isotherm models, the performance 
and quality of the fitness expressed as the values 
of MSC revealed that Fowler-Guggenheim greater 
(5.134) was than Freudlich (3.906) was greater 
than Halsey A (3.906) was greater than Langmuir 
– Vageler (2.936) was greater than Dubinin–
Radushkevich (2.419) was greater than Kiselev 
(1.856) was greater than Temkin (1.725) was 
greater than Jovanoaic (1.062) was greater than 
Langmuir (1.023) was greater than Flory – 
Huggins (0.949) was greater than Elovich (0.869) 
was greater than Harkins-Jura-A (0.556) was 
greater than Hill-de Boer (0.375) was greater than 
Harkins-Jura-B (0.355) was greater than Frenkel- 
Hasley- Hill (0.323) was greater than Halsey B 
(0.280) was greater than Halsey C (0.133). The 
details are presented in Table 2 

(ii) In the case of linear regression of adsorption 
equilibrium isotherm models, the performance 
and quality of the fitness expressed as the values 
of MSC revealed that Langmuir – Vageler (-
26.661) was less than Kiselev (8.896) was greater 
than Temkin (4.701) was greater than Dubinin- 
Redunshikevich (4.621) was greater than Fowler-
Guggenheim (3.591) was greater than Langmuir 

C (2.768) was greater than Freundlich (2.655) 
was greater than Hasley B (2.551) was greater 
than Langmuir D (2.235) was greater than Hill-de 
Boer (2.159) was greater than Elovich (1.746) was 
greater than Harkins-Jura –A (1.688) was greater 
than Frenkel Hasley- Hill (1.428) was greater than 
Harkins-Jura –B (1.226)was greater than Hasley 
A (1.206) was greater than Hasley C (0.930) was 
greater than Flory – Huggins (0.423) was greater 
than Langmuir E (0.381) was greater than 
Langmuir A (0.204) was greater than Jovanonic 
(0.045) was greater than Langmuir A (0.012). The 
details are presented in Table 3. 

c) Based on AIC the quality of the isotherm fit can be 
arranged in order of increasing weightage of the 
accuracy as follows: 

i. In the case of non-linear regression of adsorption 
equilibrium isotherm models, the performance 
and quality of the fitness expressed as the values 
of AIC revealed that Fowler-Guggenheim (-
20.032) was greater than Freudlich (-19.243) was 
greater than Halsey A (-19.243) was greater than 
Dubinin–Radushkevich (-10.316) was greater 
than Temkin (-5.039) was greater than Hill-de 
Boer (-3.234) was greater than Langmuir – 
Vageler (-2.263) was greater than Jovanoaic (-
1.943) was greater than Langmuir (--1.905) was 
greater than Flory – Huggins (-1.465) was greater 
than Elovich (-0.968) was greater than Harkins-
Jura-A (1.261) was greater than Kiselev (1.550) 
was greater than Frenkel- Hasley- Hill (2.846) was 
greater than Halsey C (3.401) was greater than 
Halsey B (5.748) was greater than Harkins-Jura-
B (7.246). The details are presented in Table 2. 

ii. In the case of linear regression of adsorption 
equilibrium isotherm models, the performance 
and quality of the fitness expressed as the values 
of AIC revealed that Kiselev (-42.227) was greater 
than Temkin (-24.013) was greater than Dubinin- 
Redunshikevich (-23.531) was greater than 
Freundlich (-17.928) was greater than Fowler-
Guggenheim (-7.373) was greater than Langmuir 
D (-1.548) was greater than Jovanonic (-0.076) 
was greater than Langmuir B (0.122) was greater 
than Langmuir C (0.319) was greater than 
Langmuir A (1.421) was greater than Hasley C 
(2.431) was greater than Hasley A (7.432) was 
greater than Harkins-Jura –B (7.550) was greater 
than Frenkel Hasley- Hill (8.763) was greater than 
Harkins-Jura –A (10.323) was greater than Hasley 
B (10.471) was greater than Elovich (11.350) was 
greater than Hill-de Boer (13.150) was greater 
than Flory – Huggins (14.203) was greater than 
Langmuir E (20.768) was greater than Langmuir - 
Vageler (160.163). The details are presented in 
Table 3. 
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Figure 4a: SEM of Poes at 100KX 

Figure 4b: SEM of Poes at 150KX 

Figure 4c: EDS of Poes at Spot A 

Figure 4d: EDS of Poes at Spot B 

 

 

Figure 5a: EDS of Poes at Spot A with elemental composition 
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Figure 5b: EDS of Poes at Spot B with elemental composition 

 

 
Figure 6a: SEM of similar Poes (Source: Guru and Dash, 2014).  

Figure 6c: SEM of similar Poes (Source: Hee-
Jeong and Seung-Mok, 2015). 

 
Figure 6b: EDS of similar Poes (Source: Hee-Jeong, 2019). 

 



 

 695 

Table 2. Adsorption equilibrium Parameters for Non- Linear regression adsorption equilibrium models 

Model Parameters MSC AIC CD R 

Langmuir aL 0.00646 bL 383.900 1.023 -1.905 0.498 0.706 

Freudlich Kf 32.65536 Nf 0.286 3.906 -19.243 0.972 0.986 

Halsey A KH  0.36874 NH 0.286 3.906 -19.243 0.972 0.986 

Halsey B (Hamdaoui and 
Naffrechous, 2014) 

KHf 0.35892 NHf 3.988 0.280 5.748 -0.055 0.234 

Halsey C(Rangabhashiyum et 
al., 2014) 

KHf 0.54212 NHf 2.699 0.133 3.401 -0.222 0.471 

Temkin bt 93.58712 at 3.984 1.725 -5.029 0.751 0.867 

Harkins-Jura-A Ahj  -0.42063 Bhj -0.001 0.556 1.261 0.199 0.446 

Harkins-Jura-B Ahj 0.261 Bhj 1.0987 0.355 7.246 0.022 0.148 

Jovanoaic qm -0.70699 k 2.220 1.062 -1.943 0.518 0.719 

Flory - Huggins KFH 4.29978 NFH 1.104 0.949 -1.465 0.460 0.678 

Langmuir - Vageler qmax 1.09765 KLV 0.353 2.936 -2.263 0.926 0.962 

Frenkel- Hasley- Hill Kfhh  0.00767 Kfhh 52.249 0.323 2.846 -0.010 0.100 

Elovich qmE 311.39892 KE 0.008 0.869 -0.968 0.415 0.644 

Fowler-Guggenheim W 0.23400 KFG 1.165 5.134 -20.032 0.992 0.996 

Hill-de Boer KHd 1.68613 K2 0.818 0.375 -3.234 0.864 0.930 

Kiselev K1 1.63415 Kn 1.810 1.856 1.550 0.782 0.884 

Dubinin–Radushkevich  k  25.118 Xm 17.647 2.419 -10.316 0.876 0.936 

 

Table 3. Adsorption equilibrium Parameters for Linear regression adsorption equilibrium models 

Summary Equilibrium Isotherm Models' Parameters MSC AIC CD R 

Langmuir - Vageler qmax 0.0043 KLV 577.5954 -26.661 160.163 -0.276 0.525 

Hill-de Boer KHd 1.968 K2 0.702  2.159 13.1498 0.0357 0.1891 

Flory - Huggins KFH 60.4332 NFH 2.9421  0.423 14.203 0.086 0.293 

Elovich qmE 1790.223 KE 0.006  1.746 11.3499 0.7564 0.8697 

Fowler-Guggenheim W -229.552 KFG 1.668  3.591 -7.3725 0.9615 0.9806 

Kiselev K1 0.174 Kn 3.252  8.896 -42.2267 0.9998 0.9999 

Langmuir E bL 2105.1295 aL 0.001  0.381 20.768 0.047 0.216 

Langmuir D bL 2105.1295 aL 0.001  2.235 -1.548 0.851 0.922 

Langmuir C bL 1.7797 aL 2.276  2.768 0.319 0.912 0.955 

Langmuir B bL 1093.3217 aL 0.002 0.012 0.122 0.698 0.835 

Langmuir A bL 726.2891 aL 0.003  0.204 1.421 0.921 0.960 

Jovanonic qm 3.648 k 0.641 0.045 -0.076 0.367 0.606 

Harkins-Jura -A Ahj  0.2216  Bhj 4.044  1.688 10.323 0.993 0.997 

Harkins-Jura -B Ahj 1.255 Bhj 1.336  1.226 7.550 -0.101 0.318 

Frenkel Hasley- Hill Kfhh  0.1014  Nfhh 1.037  1.428 8.763 0.851 0.923 

Hasley A KH  1.625 NH  8.014  1.206 7.432 0.807 0.898 

Hasley B KH 45.582 NH 0.262  2.551 10.471 0.891 0.944 

Hasley C KH 2.333 NH 0.262  0.930 2.431 0.449 0.670 

Temkin bt 2.816 at 3.857  4.701 -24.013 0.986 0.994 

Dubinin- Redunshikevich k -22.015 Xm 1.55 x 1013  4.621 -23.531 0.986 0.9931 

Freundlich Kf 45.582 Nf 0.262  2.655 -17.928 0.902 0.950 

 

From these results, it is obvious that Freundlich and 
Fowler- Gugggenheim isotherm offer the best fit for Asic 
adsorption at equilibrium for both non-linear and linear 
adsorption equilibrium isotherm models. On the contrary 
Langmuir adsorption equilibrium isotherm model is not 
consistent with the performance indicators (MSC, AIC, CD 
and R) for both non-linear and linear regression analysis 
of the adsorption equilibrium data. Moreover, compared to 
other adsorption equilibrium isotherms, the parameter 
sets of the Freundlich and Halsey A isotherms for Asic were 
remarkably consistent and quite similar for both non-linear 
and linear transform values. In certain adsorption 
equilibrium isotherms models, it was found that these 
parameters acquired using linearization adsorption 
equilibrium isotherms models are better than the values 
derived by non-linear regression adsorption equilibrium 
isotherms. This phenomenon is common in cases where 
the parameters are not consistent, and diverge widely and 
with ambiguous parameters. The adsorption equilibrium 
isotherms models with inconsistent parameters include 

Langmuir (Langmuir E, Langmuir D, Langmuir A and 
Langmuir B), Elovich, Fowler-Guggenheim, and Dubinin- 
Redunshikevich adsorption equilibrium isotherms models. 

 

4. Conclusion 

Poes particles are an excellent source of various inorganic 
materials for Asic adsorption. Freundlich isotherm can be 
adjudged as the best-fit isotherm for Asic adsorption in 
linear as well as non-linear systems based on the 
performance indicators and consistency of the 
parameters. Langmuir isotherm, which is among the most 
common use isotherm was able to offer a fair indication of 
the relative ranking of the linear isotherm fits based on the 
selected performance indicators with inconsistency in the 
parameters. In the non-linear regression analysis, the 
Langmuir, Elovich, Fowler-Guggenheim, and Dubinin- 
Redunshikevich isotherms produced very inconsistent 
results quite different from that obtained by linear 
regression from which it can be inferred that these 
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adsorption equilibrium isotherm models are not 
particularly reliable models for Asic adsorption. The linear 
and non-linear regression analysis of the adsorption 
equilibrium data gave different models as the best fitting 
isotherm based on the performance indicators (MSC, CD, 
R and AIC), which indicated significant differences 
between the analytical techniques. The performance of 
some adsorption equilibrium isotherm models such as 
Jovanonic, Hasley C, Harkins-Jura –B, Frenkel Hasley- 
Hill, Harkins-Jura –A, Hill-de Boer, Flory – Huggins, and 
Langmuir – Vageler show some degree of reliability. 
Therefore, to ensure reliable results of adsorption 
equilibrium data analysis through the adsorption isotherm 
models, these data sets must be evaluated by both linear 
and non-linear regression analyses. 
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