Fundamental and Applied Agriculture

Vol. 5(2), pp. 167-175: 2020

doi: 10.5455/faa.80257

Agronomy ORIGINAL ARTICLE

Response of selected sesame varieties to different weed management practices

Md Shoyeb Hossain¹, Afrina Rahman¹, Muhammad Salim¹, Mozammel Hoque², Ahmed Khairul Hasan^{1*}

¹Department of Agronomy, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh ²Department of Agronomy and Haor Agriculture, Sylhet Agricultural University, Sylhet

ARTICLE INFORMATION	Abstract
Article History	An experiment was conducted at the Agronomy Field Laboratory,
Submitted: 01 Jan 2020	Bangladesh Agricultural University during February to May 2019 to study
Accepted: 28 Mar 2020	the effect of weed management practices on the yield of different sesame
First online: 16 Apr 2020	varieties. The experiment comprised two factors; factor A: sesame varieties <i>viz</i> . Binatil-2, BARI Til-3 and BARI Til-4; factor B: weed management practices <i>viz</i> . no weeding, one hand weeding at 15 days after sowing (DAS),
Academic Editor Md Parvez Anwar parvezanwar@bau.edu.bd *Corresponding Author Ahmed Khairul Hasan akhasan@bau.edu.bd	two hand weeding at 15 and 30 DAS, three hand weeding at 15, 30 and 45
	DAS, and post-emergence herbicide application at 10 days after emergence
	(DAE). Weed parameters and most of the yield contributing characters and yield were significantly influenced by sesame varieties and weed manage-
	ment practices. Among the varieties, the highest seed yield (1.01 t ha^{-1}) was recorded in BARI Til-4, whereas for weed management practice, the highest
	seed yield (1.26 t ha^{-1}) was obtained in three hand weeding. The highest
	seed yield (1.54 t ha^{-1}) was found in BARI Til-4 with three hand weeding
	which was statistically similar to two hand weeding with the same variety $(1, 40, 1)$ $=$ 1 $=$
	(1.48 t ha^{-1}) . Therefore, BARI Til-4 with two hand weeding at 15, and 30 DAS might be taken in consideration for obtaining higher seed yield in sesame.
—	Keywords: Weed management, sesame, hand weeding, herbicide, yield

Cite this article: Hossain MS, Rahman A, Salim M, Hoque M, Hasan AK. 2020. Response of selected sesame varieties to different weed management practices. Fundamental and Applied Agriculture 5(2): 167–175. doi: 10.5455/faa.80257

1 Introduction

Sesame (*Sesamum indicum* L.) is one of the important and ancient edible oil seed crop cultivated in Bangladesh. It is widely used in different countries of the world because of its high oil, antioxidant, nutritional and protein contents (Kamal-Eldin et al., 1992; Morris, 2002; Pal et al., 2010). As an excellent vegetable oil source, sesame seeds contain the highest amounts of oil (35-63%) among oil crops (Kim et al., 2006). Sesame has been cultivated in an area of 9.3 thousand acres and the production was 3.4 thousand metric tons in 2016-2017 in Bangladesh (BBS, 2017). The average yield of sesame in Bangladesh is 0.91 t ha⁻¹ which seems to be low compared to other sesame growing countries (FAO, 2019). This low yield is partly due to growing low yielding varieties and lack of using appropriate agronomic practices such as balanced fertilizer, sowing method and time, plant density, weed management and so on (Miah et al., 2016). So, to get the maximum possible benefits from sesame cultivation, it is essential to develop appropriate agronomic package for yield maximization. Among the various cultural practices, suitable cultivar and weed management methods might play an important role for yield maximization.

Sesame yield losses are mainly due to delayed or insufficient weed control. Weeds can negatively influence sesame yield as weed emerge simultaneously and grow vigorously with sesame. So, weeds compete for nutrients, space and solar radiation with sesame during early stage of crop establishment which causes 50-70% reduction in seed yield (Grichar et al., 2001a,b). Several growth stages of sesame such as emergence, flowering and capsule setting are very vulnerable to weed competition. For proper growth and higher yield, a critical weed free period of up to 50 days after sowing is needed (Langham et al., 2008). Therefore, to avoid yield loss, weed management should be done in such a time so that minimum weed infestation occurs in sesame (Duary and Hazra, 2013). The conventional method of weed control is much effective but knowledge about appropriate stage of weeding along with lack of labor availability at those stages makes hand weeding non effective. Therefore, use of herbicide could be more feasible and efficient to check early weed competition. But hand weeding is still preferable where labor availability is not a problem. Raikwar and Srivastva (2013) reported that the yield of sesame can be increased by 21 to 53% with the adoption of improved technologies such as high yielding variety, recommended dose of fertilizer, proper weed management and plant protection measures. Keeping this in view, an attempt was made to study varietal response of sesame to weed management, and identify suitable variety and weed management practice for maximizing sesame yield.

2 Materials and Methods

2.1 Experimental site

The study was conducted at the Agronomy Field Laboratory, Bangladesh Agricultural University located at 24°43′8.3″N, 90°25′41.2″E at an elevation of 18 m from the sea level. The experimental field belongs to the non-calcareous dark grey floodplain soil under the Agro-ecological Zone of Old Brahmaputra Floodplain (AEZ-9) of Bangladesh (UNDP/FAO, 1988). The field was a medium high land with flat and well drained condition having silty loam texture with the pH value of the soil ranged from 5.9-6.5 and organic carbon (%), total N content (%) of the soil were 0.93 and 0.13, respectively. The experimental site is characterized by high temperature, high humidity and heavy rainfall with occasional gusty winds during April-September (Kharif season) and scanty rainfall associated with moderately low temperature during October-March (Rabi season).

2.2 Experimental treatments and design

The experiment included two factors; factor A: Three (3) sesame varieties *viz*. Binatil-2, BARI Til-3 and BARI Til-4; factor B: Five (5) weed management practices *viz*. no weeding (W1), one hand weeding (W2) at 15 days after sowing (DAS), two hand weeding (W3) at 15 and 30 DAS, three hand weeding (W4) at 15, 30 and 45 DAS, and post emergence herbicide Limi super 9EC (active ingredient-Fenoxaprop-p-ethyl 9 EC)

(9.3% w/w) application @ 650 mL ha⁻¹ at 10 days after emergence (DAE) (W5). The experiment was laid out in a randomized complete block design (RCBD) with three replications.

2.3 Crop husbandry

The main field was prepared by power tiller with ploughing and cross ploughing followed by laddering. After laying out, the land was fertilized with urea, triple super phosphate, MoP @ 60, 70 and 30 kg ha^{-1} , respectively (FRG, 2012). The entire amounts of TSP, MoP and half dose of urea were applied at the time of final land preparation and rest half dose of urea was applied at 25 DAS. Seeds were sown at the rate of 7.5 kg ha⁻¹ by continuous line sowing in furrows maintaining 30 cm distance between two adjacent furrows on 15 February 2019 and the furrows were covered with soils soon after seeding. At 10 DAS, the seedlings were emerged fully and thinning was done to maintain plant to plant distance of 10 cm. Weed was removed according to the treatment specification. Irrigation, drainage and other intercultural operations were done when it was necessary. Crops were harvested on 17 May 2019 at 91 DAS, when 80% capsules attained maturity.

2.4 Sampling and measurements

To collect data on weed parameters, weed samples were collected from three spots of each plot at 20 DAS, 40 DAS and at harvest using a 0.25 m \times 0.25 m quadrate as described by Cruz et al. (1986). The weeds within the quadrate were counted and converted to number m^{-2} . For dry weight of weed, the weeds within the quadrate were collected and roots were cleaned with water. Then the weeds were oven dried for 72 h at a temperature of 80 °C and after weighing results were converted to g m⁻². At harvest, five plants excluding border plants per plot were selected randomly for recording yield contributing data. An area of central 1 m × 1 m was selected from each plot to record the yields of seed and stover. The harvested crop of each unit area was separately bundled, properly tagged and then brought to the threshing floor. After drying, seeds were separated from the plants then sun dried at 12.5% moisture level and cleaned. The stover was also sun dried properly. Finally, the yields of seed and stover plot⁻¹ were recorded and converted to t ha^{-1} .

2.5 Data analysis

The collected data were compiled, tabulated and subjected to statistical analysis using computer package program MSTAT-C. After that mean differences were adjudged by Duncan's Multiple Range Test (DMRT) (Gomez and Gomez, 1984).

3 Results and Discussion

3.1 Weed growth

3.1.1 Varietal difference

Variety of sesame has significant influence on weed density and weed dry weight at 20 DAS, 40 DAS and at harvest (Fig. 1(a) and Fig. 1(b)). At 20 and 40 DAS, the highest number of weeds m^{-2} (22.27 and 78.93, respectively) was obtained in BARI Til-3 and at harvest the highest number of weeds m^{-2} (122.40) was found in Binatil-2. But at 20, 40 DAS and at harvest, the lowest number of weeds m^{-2} (19.87, 70.47 and 110.30, respectively) was obtained in BARI Til-4. On the other hand, the maximum weed dry weight (8.11 g m⁻²) was obtained in BARI Til-4 which was statistically similar with BARI Til-3 and the minimum dry weight of weeds (7.35 g m⁻²) was obtained in Binatil-2 at 20 DAS. Then at 40 DAS, the maximum dry weight of weeds (27.58 g m⁻²) was obtained in BARI Til-3 and the lowest (22.95 g m⁻²) was obtained from BARI Til-4. Finally, at harvest, the highest weed dry weight $(163.20 \text{ g m}^{-2})$ was obtained in BARI Til-4 and the lowest one (128.70 g m⁻²) was obtained in BARI Til-3. The results is in close agreement with the findings of Sarker (1979), Rahman et al. (2017) where they found that the variety of rice has significant influence on the component and number of weed practices.

3.1.2 Effect of weed management

Weed management has significant effect on weed density and weed dry weight at 20 and 40 DAS and at harvest (Fig. 2(a) and Fig. 2(b)). At 20 and 40 DAS and at harvest the highest number of weeds m^{-2} (32.0, 144.3 and 257.11, respectively) was obtained in no weeding. At 20 DAS, the lowest number of weeds m^{-2} (13.33) was obtained in one hand weeding at 15 DAS. At 40 DAS and at harvest, the lowest number (34.0 and 37.33, respectively) of weeds was obtained in three hand weeding at 15, 30 and 45 DAS. It was observed that more weeding resulted in lower weed density on the plots. On the other hand, the maximum weed dry weight (11.86 g m⁻², 45.44 g m⁻² and 217.40 g m⁻²) was obtained in no weeding at 20, 40 DAS and at harvest, respectively. At 20, 40 DAS and at harvest the minimum weed dry weight (6.07 g m $^{-2}$, 16.24 g m⁻² and 112.80 g m⁻²) was obtained in three hand weeding at 15, 30 and 45 DAS. It might be due to the fact that repeated weeding reduces the number of weeds on the plots because it controls the dominant weed from the beginning of the crop growth and at the same time it shows the broad-spectrum control of weeds. Naik et al. (2019) observed the similar result in case of weed weight. The results is in conformity with the results of Acker et al. (1993), Mahajan et al. (2009); who observed that weed management method greatly affect the growth of weed.

3.1.3 Interaction effect

The interaction effect of variety and weed management on weed density and weed dry weight was significant at 20, 40 DAS and at harvest (Table 1). At 20 and 40 DAS, the highest number of weeds m^{-2} (39.00) and 161.70) and the highest weed dry weight (13.07 g m⁻² and 58.59 g m⁻²) were obtained in BARI Til-3 \times no weeding. At 20 DAS, the lowest number of weeds m^{-2} (13.33) was obtained from BARI Til-3 × one hand weeding and the lowest dry weight of weeds (5.87 g m^{-2}) was obtained in BARI Til-3 × post emergence herbicide which was statistically similar to Binatil-2 \times three hand weeding at 15, 30 and 45 DAS. Then, at 40 DAS, the lowest number of weeds (29.67) was found in BARI Til-3 \times three hand weeding at 15, 30 and 45 DAS and the minimum dry weight of weeds (15.13 g m^{-2}) was obtained in Binatil-2 \times three hand weeding at 15, 30 and 45 DAS. Finally, at harvest the highest number of weed m^{-2} (291.00) was obtained in Binatil-2 \times no weeding and the maximum weed dry weight (263.30 g m⁻²) was obtained from BARI Til-4 \times no weeding. The lowest number of weeds (32.67) and weed dry weight (101.90 g m^{-2}) was obtained from BARI Til-3 \times three hand weeding at 15, 30 and 45 DAS. Our results is at par with the observation of Smith et al. (2009). Whereas Duary and Hazra (2013) and Hassan et al. (2019) found non-significant effect of interaction variety of crop and weed management technique.

3.2 Yield and yield characters

3.2.1 Varietal difference

Plant height, number of capsules plant⁻¹, number of seeds capsule⁻¹, 1000-seed weight, seed yield, stover yield and harvest index was significantly influenced by variety (Table 2). The highest plant height (107.20 cm) was obtained in BARI Til-4 and the lowest plant height (96.95 cm) was obtained in Binatil-2. The highest number of capsules $plant^{-1}$ (57.87) was produced in BARI Til-4 and the lowest number of capsules $plant^{-1}$ (39.87) was recorded in Binatil-2. The highest number of seeds capsule⁻¹ (78.00) was produced in BARI Til-4 and the lowest number of seeds capsule⁻¹ (64.40) was recorded in Binatil-2 which was statistically identical to BARI Til-3. The highest 1000-seed weight (3.14 g) was found in BARI Til-4 where the lowest was found in Binatil-2 (2.86 g) which was statistically similar with BARI Til-3. It might be due to 1000-seed weight is a varietal character and it varies from variety to variety. Subrahmaniyan et al. (1999) found difference in 1000-seed weight with different sesame varieties. The highest seed yield (1.01 t ha^{-1}) was recorded in BARI Til-4 while the lowest seed (0.73 t ha^{-1}) was found in Binatil-2. This might be due to the fact that BARI Til-4 produced the highest number of capsules plant⁻¹, seeds capsule⁻¹ and

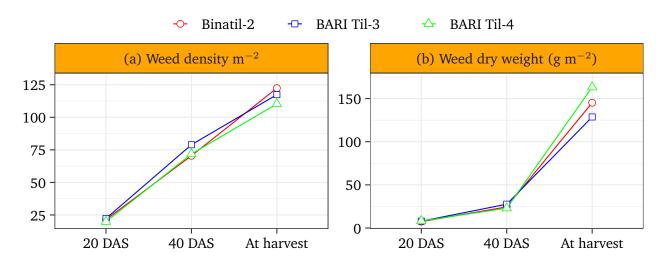


Figure 1. (a) Weed density and (b) weed dry weight at different days after sowing (DAS) in sesame

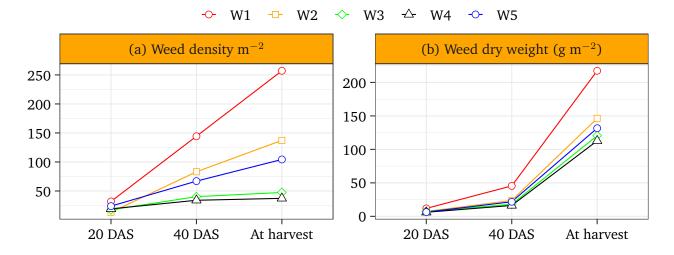


Figure 2. (a) Weed density and (b) weed dry weight at different days after sowing (DAS) as influenced by weed management practices. W1 = No weeding, W2 = One hand-weeding at 15 days after sowing (DAS), W3 = Two hand-weeding at 15 and 30 DAS, W4 = Three hand-weeding at 15, 30 and 45 DAS, W5 = Post-emergence herbicide application at 10 days after emergence (DAE)

Interaction	Number of weeds m^{-2}			Dry weight of weed (g m^{-2})			
$(V \times W)$	20 DAS	40 DAS	At harvest	20 DAS	40 DAS	At harvest	
$V1 \times W1$	30.67b ⁺	116.30c	291.00a	10.92b	45.66b	207.20b	
$V1 \times W2$	13.33i	91.33d	142.70e	6.54efgh	23.82de	142.40e	
$V1 \times W3$	23.00e	42.67f	45.44i	7.12def	16.09ijk	123.10fghi	
$V1 \times W4$	17.67g	33.67gh	37.00ij	5.96h	15.13k	111.30hij	
$V1 \times W5$	22.67e	68.33e	95.67h	6.23fgh	21.76efg	142.20e	
V2 imes W1	39.00a	161.70a	247.70b	13.07a	58.59a	181.80c	
V2 imes W2	9.67j	94.00d	156.00d	7.11def	25.01d	137.20ef	
$V2 \times W3$	15.00h	41.00f	48.33i	7.35cde	18.43hi	107.30ij	
V2 imes W4	19.67f	29.67h	32.67j	6.23fgh	15.57jk	101.90j	
$V2 \times W5$	28.00c	68.33e	102.30gh	5.87h	20.32fgh	115.30ghij	
$V3 \times W1$	26.33d	155.00b	232.70c	11.59b	32.06c	263.30a	
$V3 \times W2$	17.00g	64.00e	113.00fg	8.23c	22.19ef	159.20d	
$V3 \times W3$	14.67hi	37.00fg	48.67i	7.76cd	19.32gh	131.30efg	
$V3 \times W4$	20.33f	38.67fg	42.33ij	6.03gh	18.03hij	125.20fgh	
$V3 \times W5$	21.00f	64.33e	115.00f	6.94defg	23.16de	137.20ef	
SE	0.538	2.15	3.98	0.297	0.835	5.3	
Sig. level	0.01	0.01	0.01	0.01	0.01	0.01	
CV (%)	4.39	5.06	5.91	6.6	5.78	6.3	

Table 1. Interaction effects of variety and weed management practices on weed density and dry weight of weed
at different days after sowing (DAS) of sesame

⁺ In a column figures having common letter(s) do not differ significantly as per DMRT;

V =variety, W = weed management; SE = standard error; V1 = Binatil-2, V2 = BARI Til-3, V3 = BARI Til-4, W1 = No weeding, W2 = One hand weeding at 15 DAS, W3 = Two hand weeding at 15 and 30 DAS, W4 = Three hand weeding at 15, 30 and 45 DAS, W5 = Post emergence herbicide Limi super 9EC application at 10 days after emergence (DAE); CV = Coefficient of Variation

Table 2. Effect of variety on yield contributing characters and yield of sesame

Variety	Plant height (cm)	Capsules plant ⁻¹	Seeds capsule ⁻¹	WTS (g)	Seed yield (t ha ⁻¹)	Stover yield (t ha ⁻¹)	Harvest index (%)
Binatil-2 BARI Til-3 BARI Til-4	96.95c [†] 102.60b 107.20a	39.87c 46.20b 57.87a	64.40b 65.60b 78.00a	2.86b 2.92b 3.14a	0.73c 0.86b 1.01a	4.79b 5.74a 5.76a	12.72b 12.89b 14.23a
SE Sig. level CV (%)	0.899 0.01 3.4	$0.507 \\ 0.01 \\ 4.09$	0.854 0.01 4.77	0.058 0.01 7.6	$0.018 \\ 0.01 \\ 8.44$	0.063 0.01 4.49	0.26 0.01 7.58

⁺ In a column figures having common letter(s) do not differ significantly as per DMRT; SE = standard error; CV = Coefficient of Variation

Weed manag.	Plant height (cm)	Capsules plant ⁻¹	Seeds capsule ⁻¹	WTS (g)	Seed yield (t ha ⁻¹)	Stover yield (t ha ⁻¹)	Harvest index (%)
W1	87.75d [†]	33.33e	56.00e	2.49d	3.96e	0.440e	9.94d
W2	96.53c	46.55d	63.33d	2.72c	5.18d	0.636d	10.96c
W3	107.40b	53.89b	77.33b	3.18b	6.12b	1.13b	15.53a
W4	114.60a	56.67a	80.67a	3.44a	6.40a	1.26a	16.37a
W5	105.00b	49.44c	69.33c	3.04b	5.49c	0.870c	13.63b
SE	1.16	0.654	1.1	0.075	0.082	0.024	0.335
Sig. level	0.01	0.01	0.01	0.01	0.01	0.01	0.01
CV (%)	3.4	4.09	4.77	7.6	4.49	8.44	7.58

Table 3. Effect of weed management practices on yield contributing characters and yield of sesame

⁺ In a column figures having common letter(s) do not differ significantly as per DMRT; SE = standard error; W1 = No weeding, W2 = One hand weeding at 15 DAS, W3 = Two hand weeding at 15 and 30 DAS, W4 = Three hand weeding at 15, 30 and 45 DAS, W5 = Post emergence herbicide Limi super 9EC application at 10 days after emergence (DAE); CV = Coefficient of Variation

Interaction $(V \times W)$	Plant height (cm)	Capsules plant ⁻¹	Seeds capsule ⁻¹	WTS (g)	Seed yield (t ha ⁻¹)	Stover yield (t ha ⁻¹)	Harvest index (%)
$V1 \times W1$	83.67i ⁺	27	56.00gh	2.46	0.41g	3.80g	9.59e
$V1 \times W2$	94.58fg	39.33	62.00efg	2.63	0.58ef	4.74f	10.90e
$V1 \times W3$	101.30de	43.67	68.00cde	3.02	0.91c	5.16def	15.03bcd
V1 imes W4	106.70c	48	72.00cd	3.22	0.98c	5.28de	15.66b
$V1 \times W5$	98.50ef	41.33	64.00ef	2.98	0.76d	4.97ef	13.25d
V2 imes W1	88.33hi	29.67	58.00fgh	2.48	0.44g	3.96g	9.99e
V2 imes W2	96.67ef	43.33	62.00efg	2.56	0.70de	5.51cd	11.33e
$V2 \times W3$	105.50cd	54.33	68.00de	3.16	1.02c	6.38b	13.77cd
$\mathrm{V2} imes \mathrm{W4}$	115.40b	56	74.00bc	3.4	1.26b	6.95a	15.35bc
$V2 \times W5$	107.30c	47.67	66.00de	3.05	0.91c	5.94c	13.28d
$V3 \times W1$	91.24gh	43.33	54.00h	2.53	0.47fg	4.13g	10.23e
$V3 \times W2$	98.33ef	57	66.00de	3	0.63e	5.30de	10.65e
$V3 \times W3$	115.40b	63.67	96.00a	3.36	1.48a	6.84a	17.79a
$V3 \times W4$	121.70a	66	96.00a	3.72	1.54a	6.97a	18.09a
$V3 \times W5$	109.30c	59.33	78.00b	3.1	0.94c	5.58cd	14.37bcd
SE	1.62	1.13	1.91	0.13	0.041	0.141	0.58
Sig. level	0.05	NS	0.01	NS	0.01	0.01	0.01
CV (%)	2.75	4.09	4.77	7.6	8.44	4.49	7.58

Table 4. Interaction effects of variety and weed management practices on yield contributing characters and yield of sesame

⁺ In a column figures having common letter(s) do not differ significantly as per DMRT;

V =variety, W = weed management; SE = standard error; V1 = Binatil-2, V2 = BARI Til-3, V3 = BARI Til-4, W1 = No weeding, W2 = One hand weeding at 15 DAS, W3 = Two hand weeding at 15 and 30 DAS, W4 = Three hand weeding at 15, 30 and 45 DAS, W5 = Post emergence herbicide Limi super 9EC application at 10 days after emergence (DAE); CV = Coefficient of Variation

the highest 1000-seed weight which ultimately contributed to the highest seed yield. The highest stover yield (5.76 t ha⁻¹) was recorded in BARI Til-4 which was statistically similar to BARI Til-3 and the lowest stover yield (4.79 t ha⁻¹) was found in Binatil-2. The height value of harvest index (14.23%) was recorded in BARI Til-4 and the lowest (12.74%) was achieved in Binatil-2 which was statistically similar to BARI Til-3. Similar results were reported by Hoque et al. (2007) and Hoque et al. (2008) where they observed that yield contributing characters and yield varied among different sesame cultivars.

3.2.2 Effect of weed management

Plant height, number of capsules plant⁻¹, number of seeds capsule⁻¹, 1000-seed weight, seed yield, stover yield and harvest index was significantly influenced by weed management (Table 3). The highest plant height (114.60 cm) was recorded in three hand weeding at 15, 30 and 45 DAS and the lowest (87.75 cm) was recorded in no weeding. Three hand weeding at 15, 30 and 45 DAS produced the highest number of capsules $plant^{-1}$ and seeds capsule⁻¹ (56.67 and 80.67, respectively) and the lowest number (33.33 and 56.0, respectively) were found in no weeding. It might be due to more weeding frequency creates the availability of more space, air, water, light which resulted in the production of more capsules plant⁻¹ and more seeds capsule⁻¹. Bhadauria et al. (2012) reported that prolonged weed free condition increased number of capsules $plant^{-1}$ and seeds capsule⁻¹.

The highest 1000-seed weight (3.44 g) was recorded in three hand weeding at 15, 30 and 45 DAS whereas the lowest 1000-seed weight was found in no weeding (2.49 g). The maximum seed weight was found with increased number of weeding which might be due to the proper growth and development of seeds in the absence of weeds. The highest seed and stover yield (1.26 tha⁻¹ and 6.40 t ha⁻¹) were recorded in three hand weeding at 15, 30 and 45 DAS, while the lowest seed and stover yield (0.44 t ha^{-1}) and 3.96 t ha^{-1} , respectively) were found in no weeding condition. More weeding increased the yield of sesame seed because the weed free ideal rhizosphere environment might have provided higher nutrient uptake which resulted in the greater source accumulation and efficient translocation of photosynthates into the sink as indicated by higher yield attributes. The highest harvest index (16.37%) was recorded in hand weeding for three times at 15, 30 and 45 DAS and the lowest (9.94%) harvest index was recorded in no weeding. These results are in compliance with the report of Kumar et al. (2012), Sultana et al. (2013). Khan et al. (2009) also reported that weed management practices affect the yield contributing characters of sesame.

3.2.3 Interaction effect

Interaction between variety and weed management had significant influence over different parameters except capsules plant⁻¹ and 1000-seed weight (Table 4). The tallest plant (121.70 cm) was observed in BARI Til-4 × three hand weeding at 15, 30 and 45 DAS and the shortest plant height (83.67 cm) was obtained in Binatil-2 × no weeding. Frequent weeding might provide better growth or height due to less weed competition. The highest number of seeds capsule⁻¹ (96.00) was observed in BARI Til-4 × three hand weeding at 15, 30 and 45 DAS and BARI Til-4 × two hand weeding at 15 and 30 DAS. On the other hand, the lowest number of seeds capsule⁻¹ (54.00) was obtained in BARI Til-4 × no weeding.

The highest seed yield (1.54 t ha^{-1}) was observed in the treatment combination of BARI Til-4 \times three hand weeding at 15, 30 and 45 DAS which was statistically similar to BARI Til-4 \times two hand weeding at 15 and 30 DAS. This might be due to in prolonged weed free condition crop produced higher number of capsules plant⁻¹, seeds capsule⁻¹ and 1000-seed weight that leads to higher seed yield. The lowest seed yield (0.41 t ha⁻¹) was obtained in Binatil-2 \times no weeding which was statistically similar to BARI Til-3 \times no weeding. This might due to in no weeding condition sesame plant suffered from more weed density in the early growth stages. The highest stover yield (6.97 t ha⁻¹) was observed in BARI Til-4 \times three hand weeding at 15, 30 and 45 DAS which was statistically similar to BARI Til-4 \times two hand weeding at 15 and 30 DAS. This might be due to prolonged weed free period leads to better vegetative growth thus increased stover yield whereas the lowest stover yield (3.80 t ha^{-1}) was obtained in Binatil-2 \times no weeding treatment. The highest harvest index (18.09%) was observed in the treatment BARI til-4 \times three hand weeding at 15, 30 and 45 DAS which was statistically similar with BARI Til-4 \times two hand weeding at 15 and 30 DAS. On the other hand, the lowest harvest index (9.59%) was obtained in Binatil-2 \times no weeding.

4 Conclusions

It is clear that variety of sesame and weed management practices have significant influences on the growth and development of weed, yield contributing characters and yield of sesame. In weedy conditions, none of the studied sesame varieties could produce optimum yield. BARI Til-4 with three hand weeding produced the highest seed yield which is similar to the two hand weeding of the same variety. Therefore, it might be concluded that BARI Til-4 with two hand weeding at 15 and 30 DAS could be a better treatment for reducing crop weed competition of sesame plant which gave higher yield of sesame.

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

- Acker RCV, Swanton CJ, Weise SF. 1993. The critical period of weed control in soybean [*Glycine max* (L.) Merr.]. Weed Science 41:194–200. doi: 10.1017/s0043174500076050.
- BBS. 2017. Yearbook of Agricultural Statistics of Bangladesh. Bangladesh Bureau of Statistics, Ministry of Planning, Government of the Peoples Republic Bangladesh, Dhaka, Bangladesh.
- Bhadauria N, Yadav KS, Rajput RL, Singh VB. 2012. Integrated weed management in sesame. Indian Journal of Weed Science 44:235–237.
- Cruz ED, Moody K, Ramos MBD. 1986. Reducing variability sampling weeds in upland rice (*Oryza sativa*). Philippine Journal of Weed Science 13:56– 67.
- Duary B, Hazra D. 2013. Determination of critical period of crop-weed competition in sesame. Indian Journal of Weed Science 45:253–256.
- FAO. 2019. Food and Agriculture Organization of the United Nations. Available at http://faostat.fao. org.
- FRG. 2012. Fertilizer Recommendation Guide. Bangladesh Agricultural Research Council (BARC), Farmgate, Dhaka, Bangladesh.
- Gomez KA, Gomez AA. 1984. Statistical Procedures for Agricultural Research. John Willey and Sons, New York, USA.
- Grichar W, Sestak DC, Brewer KD, Besler BA, Stichler CR, Smith DT. 2001a. Sesame (*Sesamum indicum* L.) tolerance and weed control with soil-applied herbicides. Crop Protection 20:389–394. doi: 10.1016/s0261-2194(00)00147-2.
- Grichar W, Sestak DC, Brewer KD, Besler BA, Stichler CR, Smith DT. 2001b. Sesame (*Sesamum indicum* L.) tolerance with various postemergence herbicides. Crop Protection 20:685–689. doi: 10.1016/s0261-2194(01)00036-9.
- Hassan G, Tanveer S, Khan NU, Khan EA. 2019. Integrating cultivars with reduced herbicide rates for weed management in maize-II. Pakistan Journal of Weed Science Research 25.
- Hoque M, Salim M, Bhuiya MSU. 2008. Effect of variety and levels of nitrogen fertilizer on the yield performance and seed quality of sesame.

Bangladesh Journal of Progressive Science and Technology 6:85–88.

- Hoque M, Salim M, Bhuiya MSU, Alam MR. 2007. Effect of variety and sulphur on the yield and seed quality of sesame. Journal of the Bangladesh Agricultural University 5:263–267.
- Kamal-Eldin A, Yousif G, Iskander GM. 1992. Seed lipids of *Sesamum indicum* L. and related wild species in Sudan I: Fatty acids and triacylglycerols. Fett Wissenschaft Technologie/Fat Science Technology 94:254–259. doi: 10.1002/lipi.19920940705.
- Khan MHA, Sultana NA, Islam MN, Hasanuzzaman M. 2009. Yield and yield contributing characters of sesame as affected by different management practices. American-Eurasian Journal of Scientific Research 4:195–197.
- Kim KS, Ryu SN, Chung HG. 2006. Influence of drought stress on chemical composition of sesame seed. Korean Journal of Crop Science 51:73–80.
- Kumar S, Kumar A, Rana SS, Chander N, Angiras NN. 2012. Integrated weed management in mustard. Indian Journal of Weed Science 44:139–143.
- Langham DR, Riney J, Smith G, Wiemers T. 2008. Sesame Grower Guide. Sesaco Corporation, San Antonio, USA.
- Mahajan G, Chauhan BS, Johnson DE. 2009. Weed management in aerobic rice in Northwestern Indo-Gangetic plains. Journal of Crop Improvement 23:366–382. doi: 10.1080/15427520902970458.
- Miah MAM, Afroz S, Rashid MA, Shiblee SAM. 2016. Factors affecting adoption of improved sesame technologies in some selected areas in Bangladesh: An empirical study. The Agriculturists 13:140–151. doi: 10.3329/agric.v13i1.26558.
- Morris JB. 2002. Food, industrial, nutraceutical, and pharmaceutical uses of sesame genetic resources. In: Trends in New Crops and New Uses. ASHS Press Alexandria, VA.
- Naik MA, Babu PVR, Reddy MS, Kavitha P. 2019. Effect of weed management practices on weed density and yield of transplanted rice. Journal of Pharmacognosy and Phytochemistry 8:678–682.
- Pal A, Khanum F, Bawa A. 2010. Nutritional, medicinal and industrial uses of sesame (*Sesamum indicum* L.) seeds - An overview. Agriculturae Conspectus Scientificus 75:159–168.

- Rahman MM, Alam MZ, Kamal AMA. 2017. Effect of variety and weeding on the yield of transplant aman rice. Journal of Agroforestry and Environment 1:1–5.
- Raikwar RS, Srivastva P. 2013. Productivity enhancement of sesame (*Sesamum indicum* L.) through improved production technologies. African Journal of Agricultural Research 8:6073–6078.
- Sarker PA. 1979. Study of varietal response to planting geometry and weeding in transplanted rice. Allahabad Farmer 50:357–358.
- Smith MAK, Oloyede KO, Adedeji AB. 2009. Preliminary evaluation of weed management method x crop variety interaction on weed control and okra yield. Journal of Applied Biosciences 22:1283–1288.

- Subrahmaniyan K, Sridhar P, Arulmozhi N. 1999. Response of sesame (*Sesamum indicum*) to sulphur and micronutrients with and without farmyard manure under irrigated condition. Indian Journal of Agronomy 44:826–829.
- Sultana MR, Alim MA, Hossain MB, Karmaker S, Islam MS. 2013. Effect of variety and weed management practices on yield and yield attributes of wheat. Journal of Environmental Science and Natural Resources 5:91–96. doi: 10.3329/jesnr.v5i2.14800.
- UNDP/FAO. 1988. Land Resources Apprisal of Bangladesh For Agricultural Development Report No. 2. Agro-ecological Regions of Bangladesh. United Nations Development Programme and Food and Agricultural Organization, Rome., Italy.

© 2020 by the author(s). This work is licensed under a Creative Commons. Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License

The Official Journal of the **Farm to Fork Foundation** ISSN: 2518–2021 (print) ISSN: 2415–4474 (electronic) http://www.f2ffoundation.org/faa