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ABSTRACT

In order to find out the effect of arbuscular mycorrhizal fungi (AMF) and
level of irrigation on wheat, an experiment was conducted in the net house
of Department of Agronomy, Bangladesh Agricultural University during
November 2018 to April 2019. The study included two levels of AMF inoc-
ulation (inoculated and non-inoculated) and three levels of irrigation (viz.,
no irrigation, one irrigation during CRI stage, and two irrigations at tillering
and flowering stages respectively). The treatment combinations were ap-
plied to two wheat varieties, viz., BARI Gom-25 and BARI Gom-30. The pot
experiment was laid out in randomized complete block design (RCBD) with
three replications. Commercially available mycorrhizal inoculum (Gigaspora
margarita) was used to inoculate the plants of respective treatment pots. The
performances of these wheat varieties under two AMF inoculation levels (in-
oculated and non-inoculated) showed that both varieties were significantly
affected by AMF inoculation. Though all growth and yield contributing
parameters were not significantly affected by AMF application, it was evi-
dent that AMF inoculation helped the wheat plants to grow vigorously and
produce higher yield. Both wheat varieties showed their best performance
under two irrigation treatment but when inoculation was imposed, it gave
better performance than non-inoculated pot. The highest yield was recorded
with pots which were inoculated with AMF in both wheat varieties. It was
observed that in both varieties, irrigation helps wheat to perform better in
terms of all parameters in comparison to no irrigation condition, and two
irrigations gave better results than that of one irrigation. AMF inoculation
gave higher yield in non-irrigated pots in comparison to non-inoculated
non-irrigated pots. Inoculation with AMF increased 23% grain yield plant−1

compared to the non-inoculated pots. In BARI Gom-25, one irrigation gave
statistically similar yield when the crops was AMF inoculated. This results
suggest that AMF inoculation can cut the requirement of one irrigation in
wheat crop.
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1 Introduction
By 2050, the world population will be about 9.8 bil-
lion, which will be 34% higher from today and it is
needed to feed another 2.30 billion people with lim-
ited resources (UN, 2017). Food production must
need to be increased about 70% and to meet this huge
demand cereal production will need to increase about
3 billion metric tons from 2.10 billion metric tons to-
day (Hasan et al., 2017). But in a dilemma, the world
agriculture in 21st century faces versatile challenges.
Lack of irrigation water and drought stress (DS) is one
of the major abiotic factors limiting crop growth and
yield throughout the world including Bangladesh.
Regionally specific winter season drought (hydro-
logical drought) and dry spells during the monsoon
(meteorological drought) are a reoccurring concern
in Bangladesh (Mustafa et al., 2017). The agriculture
and the livelihood of people of the north and north
western regions of Bangladesh are heavily impacted
by both types of drought. The farmers rely on resid-
ual soil moisture (from the monsoon) for wheat and
other Rabi crops cultivation. Reduced and uneven
rainfall in the drought-prone area led to the drying up
of surface water bodies such as ponds, canals, beels,
and rivers (Habiba et al., 2012; Mardy et al., 2018).

Wheat (Triticum aestivum L.) is one of the most
important cereal grains worldwide (second only to
rice in importance) in terms of cultivated area, yield,
and food production (Johansson et al., 2013; Ma et al.,
2020). More than 20% of the total caloric and protein
requirement of human comes from wheat and it is
the staple food in over 40 countries for approximately
35% of the world’s population (Xiang et al., 2009).
Wheat production at global level has significantly in-
creased through the years. About 749.5 million tons
of wheat were produced on average of 220 million
ha with a productivity level of 3.4 t ha−1, a highly
significant increase from 1961, which stood at 222
million tons with a productivity level of only 1.2 t
ha−1 (Tadesse et al., 2019). However, considering
the rapid growth of world population, wheat pro-
duction needs to double by 2050 for ensuring food
security (Seleiman, 2019). Further increases in wheat
production depend on higher yields rather than an in-
crease in cropping area (Araus et al., 2003). Declining
water resources challenge this notion as water avail-
ability impacts heavily on crop yields. Moreover, in
some regions, crops are often irrigated unsustainably
with water drawn from dwindling aquifers (Feng
et al., 2007). More than 50% of the area under wheat
cultivation is affected by periodic drought (Rajaram,
2001). In major wheat-growing areas of the world,
particularly with a Mediterranean climate, mean pan
evaporation often surpasses average precipitation es-
pecially during grain filling, leading to drought dur-
ing reproductive and grain-filling phases, which is
also known as ‘terminal drought’ (Savin et al., 2015).
Consumption of wheat, regarded as second staple

food for Bangladeshi people, now has become an im-
portant supplement of rice. Wheat grown over an
area of 3.74 million hectare with an annual produc-
tion of about 1 million metric tons with an average of
2.60 t ha−1 in Bangladesh (Jahan and Ahmed, 2018).
This production is less than that of the developed
countries because about one third of the total area un-
der wheat in Bangladesh falls in the rainfed regions
where water stress can limit plant growth and pro-
ductivity due to very low or no rainfall (Khaliq et al.,
1999). In Bangladesh wheat is grown in rabi season
(November to March) under rainfed condition. Usu-
ally, no significant precipitation takes place during
this period. Most of the farmers grow wheat without
irrigation due to scarcity of water. As a result, wheat
faces drought stress at later stages that reduces grain
yield drastically.

Drought is one of the most severe abiotic stress
that constraint to plant productivity. Drought is a
multidimensional stress and it triggers an array of
plant responses ranging from physiological, biochem-
ical to molecular levels (Kaur and Asthir, 2017; Qi
et al., 2018; Batool et al., 2019; Seleiman et al., 2021).
It hinders photosynthesis, disrupt the structure of
enzymes, reduces nutrient uptake and/or transport
to the shoot, therefore prompting a hormonal and
nutritional imbalance in the plant (Ruiz-Lozano et al.,
2015). In addition, drought stress results in osmotic
stress that can lead to turgor loss, thereby, leading
to inhibition in plant growth and development (Sel-
mar and Kleinwächter, 2013). One of the inevitable
consequences of drought stress is an increase in re-
active oxygen species (ROS) production in different
cellular compartments, namely the chloroplasts and
mitochondria (Sharma and Zheng, 2019).

Arbuscular mycorrhizal fungi (AMF) is a group of
endotrophic fungi occurring in almost all terrestrial
ecosystems and have been reported to form symbiotic
associations with many plants including crops (Be-
gum et al., 2019; Qiang-Sheng et al., 2016). AMF have
been reported to increase nutrient uptake efficiency
by plants, reduce heavy metal toxicity and increase
disease resistance (Sarkar et al., 2015a,b, 2016, 2017,
2018; Talukder et al., 2019; Sarkar et al., 2020; Rashid
et al., 2021). They also improve soil moisture acqui-
sition by plants and thereby enhance its growth ca-
pacity under drought condition (Millar and Bennett,
2016; Yooyongwech et al., 2012). AMF also influence
the stress tolerance mechanisms significantly lead-
ing to optimization of biochemical changes arising
due to physiological modification, osmoregulation,
etc. (Wu et al., 2006; Zhang et al., 2010). Therefore,
over the past few decades, companies throughout the
world have manufactured and commercialized AMF
inoculants using either single AMF species or mix-
tures of AMF species that may include plant-growth-
promoting rhizobacteria or other symbiotic and/or
biocontrol fungi (Gianinazzi and Vosátka, 2004). The
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industrial manufacturing of AMF as crop inoculants
is relatively new, and, despite practical demonstra-
tions of the efficiency of AMF, and crop producers
have been slow to adopt them. Inoculation with ef-
fective microorganisms could lead to enhanced crop
productivity and higher incomes for farmers.

Based on the above discussion, we hypothesized
that AMF inoculation can increase the productivity
of wheat crop under drought condition. The Specific
objectives of this study was to study the effect of AMF
inoculation on the growth of wheat under varying
irrigation regimes.

2 Materials and Methods

2.1 Experimental site and duration

The study was conducted in the net house of the De-
partment of Agronomy, Bangladesh Agricultural Uni-
versity, Mymensingh during the period from Novem-
ber 2018 to April 2019. Geographically, the study
site was located at 24°43′11.1′′N, 90°25′42.2′′E and at
an altitude of 18 meter above the sea level. The ex-
perimental area was located under the subtropical
climate, which is specialized by moderately high tem-
perature and heavy rainfall during April to Septem-
ber and low rainfall with moderately low tempera-
ture during October to March. The monthly values
of maximum, minimum and average temperature
(°C), relative humidity (%), and monthly total rain-
fall (mm) received at the experimental site during the
study period were 29.10 °C, 17.75 °C, 23.43 °C, 80.7%,
3.8 mm, respectively.

2.2 Potting medium

For the pot culture, soil was collected from the field of
Agronomy Field Laboratory, BAU. The soil was more
or less neutral in reaction (pH 6.7), low in organic
matter content (1.29%) and the general fertility level
of the soil was low (1% total N, 26 ppm available P
and 0.14 me % exchangeable K).

2.3 Preparation of pot and inoculant

No commercially available mycorrhizal inoculum is
found. Therefore, to inoculate potting media of re-
spective treatments, AMF spores were applied in the
form of a commercial inoculant namely, ‘Serakinkon’
powder (The Central Glass Company, Tokyo, Japan).
The inoculant was composed of 50 Gigaspora margarita
Becker and Hall (BEG 34) spores per gram powder.
The collected soil was mixed with cow dung at 5:1
and was used as potting medium. Chemical fertil-
izers viz. urea, TSP, MP and gypsum were applied
@ 10.85, 7.5, 6.0 and 3.4 g 100 g−1 soil, respectively.
Mycorrhizal inocula were used in the pots where nec-
essary according to the treatment at the rate of 15 g

kg−1 soil at 3 cm depth of the soil surface and then
the soil was saturated with water. Five to six kg of
this medium was used per pot (8 L).

2.4 Treatment and experimental design

Two factors were included in the experiment, viz., (A)
AMF inoculation, and (B) irrigation regimes. AMF
had two levels (AMF inoculated and non-inoculated),
whereas irrigation regimes had three levels (no irri-
gation, one irrigation at crown root initiation (CRI)
stage, and two irrigations (at CRI stage and flowering
stage)). The experiment was laid out in a random-
ized complete block design (RCBD) with three repli-
cations. Two varieties of wheat (BARI Gom-25 and
BARI Gom-30) were used in this experiment. Since
the assessment of varietal difference was not consid-
ered the objective of the experiment, variety was not
considered as a factor. Rather, the two sets of simi-
lar experiment were conducted with the same setup
with two wheat varieties and the results are reported
separately.

2.5 Germination test of seed

Wheat seeds were collected from Bangladesh Agricul-
tural Research Institute (BARI), Joydebpur, Gazipur.
The seed of each variety were sown in two pots for
germination test. The number of sprouted and germi-
nated seeds was counted daily commencing from 1st
day till 14th days prior to the commencement of the
experiment. After 14 days, final count was done and
germination percentage of each day was calculated
by the following formula:

G =
Sg

ST
× 100 (1)

where, G = germination Percentage, Sg = number of
seeds germinated, and ST = total number of seeds
set for germination. On an average 85% seeds germi-
nated after 14 days counting.

2.6 Sowing of seeds

Seeds were sown on 20 November 2018. Sowing was
done at the rate of 15 seeds per pot. Care was taken to
protect the seedlings from birds and rodents up to 20
days after sowing. Protective net was placed around
the pots during the protection period.

2.7 Intercultural operations

After germination of seed, only 5-6 plants were kept
in each pot. Rest of the plants were removed from the
pot. Care were taken while uprooting the plants so
that the remaining plants are not injured or affected
otherwise. In some pots, there were poor seed ger-
mination. Additional seeds were sown in these pots

https://www.google.com/maps/search/?api=1&query=24.719739, 90.428397
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after one week of sowing. Two weddings, one at
20 and the other at 45 days after sowing were done
by the help of a nirii. In addition, weeds were re-
moved by hand pulling as and when necessary to
keep the pots weed free. Irrigation was given as per
the experimental treatment. During the study period
(November 2018 to March 2019) the natural monthly
total rainfall was 0, 0, 0, 1.2 and 21 mm, respectively.
However, during rainfall, the roof of net house was
covered with transparent polythene sheet so that no
rain water is added to the pots. No infestation of
disease and insects were found and hence no control
measure was taken.

2.8 Data collection

The leaf greenness was recorded by the help of SPAD
502 Plus Chlorophyll Meter. The leaf greenness was
measured in term if SPAD value and it is considered
a relative measure of leaf chlorophyll content. At full
maturity, the crop was harvested separately pot wise
on 01 March and 18 March 2019 for BARI Gom-25
and BARI Gom-30, respectively. The harvested crop
of each pot was bundled and separately tagged and
brought to the clean threshing floor. The bundles
were sun dried, threshed and then the grains were
cleaned. The grain yield was taken plot wise and
converted to grain yield per plant. Before harvesting
five plants from each pot were randomly selected and
tagged with labels. The labelled plants were uprooted
carefully so that no root is left in the soil.

2.9 Data analysis and visualization

The recorded data were statistically analyzed using
open source statistical environment ‘R’ (R Core Team,
2021). For the Analysis of Variance (ANOVA) were
conducted using ‘agricolae’ package of ‘R’. The dif-
ferences among treatment means were adjudged by
Tukey’s post hoc test. Plots presenting growth and
yield of maize were prepared by ’ggplot2’ library
(Wickham, 2016) of ‘R’.

3 Results and Discussion

3.1 Plant height

Plant height of wheat was significantly affected by
AMF inoculation, irrigation management and their
interaction in both varieties (Tables 1 and 2, Fig. 1).
AMF inoculation two irrigation and combination of
AMF × two irrigation produced the tallest plants in
both cases. However, it is noticeable from Fig. 1 that
one irrigation produced similar plant stature when it
was inoculated with AMF. Previous researcher (Sar-
war et al., 2010; Gao et al., 2020) have reported that
plant height of wheat increases with soil moisture
levels. Millar and Bennett (2016) and Yooyongwech

et al. (2012) reported that AMF inoculated plants have
better soil moisture uptake efficiency under moisture
deficit condition. Therefore, similar plant height with
both one and two irrigation under AMF inoculation
agrees with previous works.

3.2 Flag leaf area

Flag leaf area was not significantly affected by AMF
inoculation in both wheat varieties (Table 1). How-
ever, irrigation regimes and its interaction with AMF
inoculation had significant effect on the same (Ta-
ble 2, Fig. 1). Flag leaf area is an important yield
determining trait (Simón, 1999) and it has osmoreg-
ulaiton function under saline and drought condition
(Farouk, 2011). Flag leaf area increased numerically
with the frequency of irrigation and the it attained
39.83 cm2 with two irrigation. However, in both va-
rieties, both one and two irrigation had statistically
similar impact on it irrespective of AMF inoculaiton
(Fig. 1). Inoue et al. (2004) reported that flag leaf area
of some wheat varieties decreases under soil moisture
deficit condition.

3.3 SPAD value

The chlorophyll meter (or SPAD meter) is a simple,
portable diagnostic tool that measures leaf greenness,
i.e., the relative chlorophyll concentration in leaves.
Compared with traditional destructive methods, this
method provides substantial savings in time, space,
and resources (Barutcular et al., 2016). Wang et al.
(2009) reported a direct relation between soil mois-
ture status and chlorophyll content of maize leaves.
In our study, the effects of AMF inoculaiton and irri-
gation regimes on SPAD value was variety-specific.
For example, SPAD value was significantly affected
by AMF inoculation in BARI Gom-25, whereas it was
not affected in BARI Gom-30 (Table 1). For irrigation
regimes, BARI Gom-25 was not affected, however,
BARI Gom-30 was significantly affected and SPAD
value increased with the frequency of irrigation. It
reached 39.83 with two irrigation, whereas in control
(no irrigation), the value was 22.67 (Table 2). Any
combination of irrigation frequency (one or two) and
AMF inoculation gave statistically similar SPAD val-
ues and they were significantly higher than AMF0 ×
no irrigation in both wheat varieties (Fig. 1).

3.4 Ratio of shoot and root dry weights

Under drought condition, plants allocate more photo-
synthates to the root system for capturing more soil
moisture (Nejad, 2011; Xu et al., 2015). Thus, root
weight increases and shoot to root (SW-RW) ratio de-
creases in moisture deficit condition (Pace et al., 1999).
Therefore, shoot dry weight to root dry weight ra-
tio is considered an indicator for soil moisture status
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Table 1. Effect of arbuscular mycorrhizal fungi (AMF) on growth characters of wheat cv. BARI Gom-25 and
BARI Gom-30

Treatment Plant height (cm) Flag leaf area (cm2) SPAD value SW-RW ratio

BARI Gom-25
AMF0 52.71 ± 7.98 31.39 ± 8.31 42.43 ± 4.89 11.54 ± 3.98
AMF1 59.58 ± 4.99 35.99 ± 7.59 48.02 ± 3.31 15.55 ± 6.22

Sig. level 0.43* 0.238 NS 0.011* 0.122 NS

BARI Gom-30
AMF0 61.16 ± 5.23 31.96 ± 9.62 42.20 ± 5.17 9.04 ± 3.49
AMF1 67.73 ± 4.57 35.48 ± 7.89 46.12 ± 4.12 13.28 ± 2.87

Sig. level 0.049* 0.408 NS 0.094 NS 0.012*

AMF0 = AMF non-inoculated, AMF1 = AMF inoculated; SW-RW ratio: ratio of shoot and root weights; Values
are mean ± standard deviation. NS: treatment means are not significantly different at P = 0.05; * designates
treatment means are significantly different at P = 0.05

Table 2. Effect of irrigation management on growth characters of wheat cv. BARI Gom-25 and BARI Gom-30

Treatment Plant height (cm) Flag leaf area (cm2) SPAD value SW-RW ratio

BARI Gom-25
M0 50.28 ± 7.43 24.06 ± 4.40 41.92 ± 6.09 8.96 ± 3.28
M1 55.79 ± 5.12 38.44 ± 3.96 46.47 ± 3.81 14.10 ± 2.65
M2 62.37 ± 3.86 38.56 ± 4.46 47.30 ± 3.48 17.57 ± 6.24

Sig. level 0.007** <0.001** 0.127 NS 0.012*

BARI Gom-30
M0 58.79 ± 6.33 22.67 ± 3.73 39.77 ± 4.49 9.35 ± 3.63
M1 63.29 ± 5.52 38.66 ± 3.77 44.02 ± 2.91 11.69 ± 3.49
M2 71.26 ± 7.06 39.83 ± 3.16 48.70 ± 2.68 12.43 ± 4.17

Sig. level 0.012* <0.001** <0.001** 0.36 NS

M0 = no irrigation, M1 = one irrigation, and M2 = two irrigation; SW-RW ratio: ratio of shoot and root weights;
Values are mean ± standard deviation. NS: treatment means are not significantly different at P = 0.05; ** and *
designate treatment means are significantly different at P = 0.01 and P = 0.05, respectively.

Table 3. Effect of arbuscular mycorrhizal fungi (AMF) on yield contributing characters and yields of wheat cv.
BARI Gom-25 and BARI Gom-30

Treatment Grains ear−1 WTG (g) Grain yield (g plant−1) Straw yield (g plant−1)

BARI Gom-25
AMF0 13.72 ± 4.60 45.86 ± 1.63 0.63 ± 0.23 4.45 ± 1.09
AMF1 17.89 ± 4.18 46.05 ± 1.58 0.82 ± 0.18 4.64 ± 0.98

Sig. level 0.061 NS 0.803 NS 0.07 NS 0.7 NS

BARI Gom-30
AMF0 15.48 ± 4.14 43.47 ± 1.14 0.67 ± 0.19 3.82 ± 0.72
AMF1 18.54 ± 4.40 44.8 ± 1.11 0.83 ± 0.20 4.52 ± 0.77

Sig. level 0.148 NS 0.022* 0.107 NS 0.064 NS

AMF0 = AMF non-inoculated, AMF1 = AMF inoculated; WTG: weight of 1000 grains; Values are mean ±
standard deviation. NS: treatment means are not significantly different at P = 0.05; * designates treatment
means are significantly different at P = 0.05
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Table 4. Effect of irrigation management on yield contributing characters and yields of wheat cv. BARI Gom-25
and BARI Gom-30

Treatment Grains ear−1 WTG (g) Grain yield (g plant−1) Straw yield (g plant−1)

BARI Gom-25
M0 12.47 ± 2.29 45.23 ± 1.52 0.56 ± 0.10 3.45 ± 0.43
M1 15.56 ± 4.20 46.56 ± 1.72 0.72 ± 0.19 4.79 ± 0.81
M2 19.39 ± 5.07 46.08 ± 1.38 0.89 ± 0.24 5.39 ± 0.50

Sig. level 0.030* 0.344 NS 0.025* <0.001*

BARI Gom-30
M0 13.53 ± 3.14 43.87 ± 1.67 0.59 ± 0.14 3.78 ± 0.74
M1 16.53 ± 1.26 44.30 ± 0.94 0.73 ± 0.06 4.34 ± 0.74
M2 20.97 ± 4.66 44.24 ± 1.35 0.93 ± 0.22 4.38 ± 0.93

Sig. level 0.005** 0.844 NS 0.007** 0.385 NS

M0 = no irrigation, M1 = one irrigation, and M2 = two irrigation; WTG: weight of 1000 grains; Values are
mean ± standard deviation. NS: treatment means are not significantly different at P = 0.05; ** and * designate
treatment means are significantly different at P = 0.01 and P = 0.05, respectively.

(Bacher et al., 2021; Xu et al., 2015). The effects of
AMF inoculaiton and irrigation regimes on SW-RW
ratio was variety-specific. SW-RW ratio was signifi-
cantly affected by AMF inoculation in BARI Gom-25,
whereas it was not affected in BARI Gom-30 (Table 1).
For irrigation regimes, BARI Gom-25 was not affected,
however, BARI Gom-30 was significantly affected and
SW-RW ratio value increased with the frequency of
irrigation (Table 2). One or two irrigation and AMF
inoculation gave statistically similar RW-SW ratio val-
ues and they were significantly higher than AMF0 ×
no irrigation in both wheat varieties (Fig. 1). The low-
est number of grains were found in plots no irrigation
and no AMF inoculaiton in both varieties.

3.5 Number of filled grains ear−1

Number of grains ear−1 was not significantly affected
by AMF inoculation in both wheat varieties (Table 3).
However, irrigation regimes and its interaction with
AMF inoculation had significant effect on the same
(Table 4, Fig. 1). Highest number of grains ear−1

(BARI Gom-25:19.39 and BARI Gom-30:21.39) were
recorded under two irrigation condition.

3.6 Weight of 1000 grains

Thousand grain weight of rice did not differ signifi-
cantly due to AMF inoculation and irrigation manage-
ment nor their interaction at 5% level of significance
(Tables 3 and 4, Fig. 1). Previous studies reported
that drought condition affects 1000-grain weight of
wheat and reduces grain yield Denčić et al. (2000);
Houshmand et al. (2014). On the other hands, some
other researchers have found no significant difference
in 1000-grain weight of wheat under stress condition
(Taheri, 2011).

3.7 Grain yield

Grain yield of wheat was significantly affected by
AMF inoculation (Table 3), irrigation regimes (Table 4)
and their interaction (Fig. 1) for both varieties. AMF
inoculation gave 23% higher yield in BARI Gom-25
and 19% higher yield in BARI Gom-30 over their non-
inoculated treatments. In both varieties, irrigation
frequency increased grain yield (Table 4). However,
when considered the interaction effect of AMF inocu-
laiton and irrigation management, non-inoculated ×
non-irrigated pots produced the lowest grain yield in
both varieties (Fig. 1).

In BARI Gom-25, the highest grain yield (0.99 g
plant−1) was observed when the pots were inoculated
with AMF and irrigated two times. However, one irri-
gation gave statistically similar yield when the crops
was AMF inoculated. Almost similar pattern of result
was observed in BARI Gom-30. However, though
AMF inoculation was beneficial, it was noticed that
irrespective of AMF inoculation, BARI Gom-30 could
produce statistically similar grain yield in both one
and two irrigation. BARI Gom-30 is a drought toler-
ant variety. Its drought tolerance may attributed to
this kind of result. Overall, our results suggest that
AMF inoculation can cut the requirement of one irri-
gation in wheat crop. These results can be supported
by the observations of ield contributing characters
(SPAD value, flag leaf area, number of grains ear−1)
of wheat presented in previous sections. Our results
are in agreement with previous researchers (Celebi
et al., 2010; Bacher et al., 2021; Biel et al., 2021; Leven-
tis et al., 2021) who reported increased yield of AMF
inoculated cereal and vegetation crops under deficit
soil moisture condition.

Application of pendimethalin at label rate was
tolerable to all the tested wheat varieties.
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Figure 1. Effects of interaction between arbuscular mycorrhizal fungi (AMF) inoculation and irrigation
management on growth and yield contributing characters, and yields of wheat cv. BARI Gom-25 and
BARI Gom-30. AMF0 = AMF non-inoculated, AMF1 = AMF inoculated, M0 = no irrigation, M1 = one
irrigation, and M2 = two irrigation, SW-RW ratio = ratio of shoot and root weights

3.8 Straw yield

Straw yield did not differ significantly due to AMF
inoculation for neither of the wheat varieties (Table 3).
Irrigation significantly affected the straw yield of
BARI Gom-25, however, BARI Gom-30 was not af-
fected by the same (Table 4). The interaction of the
factors affected the straw yield of both varieties sig-
nificantly (Fig. 1). The highest straw yield (5.73 g
plant−1) was observed with two irrigation when the
crop was AMF inoculated in BARI Gom-25. In BARI
Gom-30, both irrigation regimes with AMF inocula-
tion gave similar straw yield.

4 Conclusion

The results of this study suggest that the yield of
wheat increases with the frequency of irrigation.
Though AMF inoculation cannot be an alternative
to irrigation under moisture deficit condition, it can

reduce the frequency of irrigation. Therefore, AMF
can be used in wheat under drought condition.
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