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ABSTRACT

Nowadays, agriculture, particularly vegetable production, plays a vital role
in the lives of the people of the Islamic Republic of Iran. The proper forecast
of harvesting of vegetable production is essential for the agriculture ministry;
so that they can make decisions about storage, import or export, etc. In this
paper, the prediction of vegetable production in Iran is done in different
time series models such as simple random walk, random walk with drift,
linear trend, quadratic trend, simple moving average, simple exponential
smoothing, double exponential smoothing, exponential trend, s-curve trend,
and Auto-Regressive Integrated Moving Average models. Depending on the
availability of the required data, a set of six different groups of vegetables
(cucumbers and gherkins, eggplants, garlic, onions, pumpkins, squash and
gourds, and tomatoes) has been studied for empirical analysis. The two
set data from 1961-62 to 2019-20, and from 1990-91 to 2019-20 has been
used to forecast the vegetable production for the next eight years from 2020-
21. The total data are divided into training data and testing data. The
best models were selected based on the lowest RMSE, minimum values of
Akaike Information Criteria, and Schwarz Bayesian Information Criteria. The
model diagnosis was performed using Ljung-Box, Runs above and below
the median, and Runs up and down tests on ACF and PACF in residuals.
For garlic, the quadratic model was selected as the best model; whereas for
the rest of the vegetable groups the ARIMA model was determined as the
optimum model. For the next eight years, suitable models were forecasted
from 2020-21 to 2027-28. Based on the findings, the forecasted production
for cucumbers and gherkins is 540.23 to 3021.31, for eggplants is 615.819 to
496.993, for garlic, is 59.1889 to 61.4415, for onions is 2204.69 to 2436.1, for
pumpkins, squash, and gourds are 196.068 to 211.065, and for tomatoes is
4399.59 to -4486.66 in 1000 tonnes from 2020-21 to 2027-28. The forecasted
data indicate an increase in the production of cucumbers and gherkins, garlic,
onions, pumpkins, squash, and gourds; and a decrease in the amount of
production of eggplants, and tomatoes in the future. The results can be
valuable for the government, and decision-makers to have a suitable plan for
crop productions.
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1 Introduction
Vegetables are rich in water, vitamins, and vital min-
erals such as fiber, folate, beta-carotene, phytochemi-
cals, etc. these all are necessary for the maintenance of
body health; besides, they reduce the risk of chronic
diseases (Ulger et al., 2018). There are currently 1000
known edible vegetables, out of which 350 are grown
on 60 million hectares of agricultural lands around
the world, and annually about one billion tonnes of
vegetables are produced (FAO, 2021). According to
the FAO, China, with an annual production of 590.676
million tonnes, is the world’s largest producer of veg-
etables; India with an annual production of 132.027
million tonnes has the second rank, the United States
with a production of 29.999 million tonnes has the
third rank, and Turkey with a production of 25.339
million tonnes is in the next ranks in this regard
(Fig. 1). Iran is also being ranked as 11th producer,
and produces about 11.827 million tonnes of vegeta-
bles in the world, which is equivalent to 1.1% of the
total vegetables produced in the world (FAO, 2021).

Iran is one of the largest producers and exporters
of vegetables in the Middle East. The diverse climate
of different regions has made Iran the fifth largest pro-
ducer of vegetables; in 2019, out of 383,000 hectares
of land under vegetable cultivation in the country,
11.827 million tonnes were harvested (FAO, 2021); In
other words, Iran is the favorable condition for grow-
ing vegetable, in addition to meet the country’s needs
in all seasons. So it would be possible to export a
variety of vegetable products to other countries, espe-
cially the Persian Gulf countries (MoAJ, 2021). The
high variety of vegetables and the existence of dif-
ferent crops has made it possible to have cultivation
programs four times a year due to the Ministry of
Agriculture has implemented many policies and pro-
grams such as: reducing or stabilizing the area under
cultivation; increasing yield with proper nutrition,
and combating spoilage agents; developing seedling
cultivation; developing new irrigation methods; de-
veloping conservation agriculture, low plowing and
rotation and increase of soil organic carbon; devel-
oping areas under greenhouse cultivation to reduce
water consumption and producing valuable products
out of season, etc. (Pakravan and Gilanpour, 2013).
Therefore, Forecasting vegetable products are neces-
sary for fair price to farmers, the agricultural industry,
and particularly governments; so that they can make
the necessary planning based on estimates of domes-
tic agricultural products. Forecasting vegetable avail-
ability and population needs might represent an es-
sential role in developing a framework for achieving
a sustainable solution to future food insecurity chal-
lenges (Vågsholm et al., 2020). To achieve valid pre-
dictions, and results, statistics play an important role
(Killeen, 2018). Many statistical and economic mod-
els have been developed to forecast various topics,
including agricultural products (Hanke and Wichern,

2008; Latifi and Shabanali Fami, 2021). Amin et al.
(2014) used various time series models for wheat pro-
duction in Pakistan, and the best model i.e. ARIMA
(1,2,2) was selected to forecast the data till 2060. They
have noticed that compared to 2010, in 2060 wheat
production would become double. To evaluate the
trend of vegetable production in terms of area and
production in the feeder zones of Chennai city in In-
dia, Arivarasi and Ganesan (2015) used time series
analysis. The area and production of vegetables in
the selected zones were forecasted by the ARIMA
model. The forecasted models showed a decreasing
trend in both cultivated area and production of veg-
etables in zone 1; however, in zone 2 an increasing
trend was found in cultivated areas whereas decreas-
ing trend was found in the vegetable production for
the period 2011-12 to 2014-15. Khayati (2015) used
two types of time series models to forecast the ma-
jor vegetable crops in Tunisia i.e. smoothing, and
stochastic models. The results indicated that the Holt
model was the best model for potatoes, artichoke,
and pepper; and ARIMA and Winters models were
appropriate for tomatoes, and onions, respectively.
Based on the results, unlike other products, the pro-
ductivity of potatoes and tomatoes was expected to
increase in the future. Rahman et al. (2016) studied
the changes from a rice-based cropping system to
a shrimp-based cropping system in the coastal area
of Bangladesh and their impact on soil environment.
Their results showed increasing in the salinity level
with changes in the availability of nutrients in the
soil. Fauziyanti et al. (2020) with the exponential anal-
ysis model tried to forecast food crop productions
and food crop consumptions; besides, they tried to
find a gap analysis projection between production
and consumption of food crops towards 2015-2021
in Bali province in Indonesia. The results showed
that the Prediction of food crop production in the Bali
province has decreased; while the forecasted food
consumption increase in line with the forecasted pop-
ulation in the future. Maghrebi et al. (2020) by using
Mann-Kendall and Sen’s slope estimator methods
investigated the changes in Iran’s agricultural pro-
duction from 1981 to 2013. Results showed that the
agricultural development in Iran was not consistent
with natural water availability changes across time
and space. Despite the decreasing water availability,
agricultural production in Iran has increased over the
mentioned period. In this study, to find the best mod-
els to forecast vegetable production groups in Iran,
the software Statgraphics was used. The results will
be helpful for farmers, researchers, decision-makers,
and the government; that way they can decide on the
management of storage, transport, and distribution.
On the other hand, accurate prediction plays a vital
role in reducing food instability and price determina-
tion.
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Figure 1. Ranking in vegetables primary production (million tonnes) in 2019 FAO (2021)

2 Materials and Methods

In this research, vegetable products in Iran such as cu-
cumbers, and gherkins, eggplants (Aborigines), gar-
lic, onions, pumpkins, squash, and gourds, and toma-
toes have been considered. For garlic and eggplants,
the production data have been used from 1990-91 to
2019-20, and for the rest of the vegetable groups, de-
pending on the availability of the required data, the
time series data from 1961-62 to 2019-20 have been
used (FAO 2021). The total data are divided into train-
ing data and testing data. The training data are from
1990-91 to 2015-16, for eggplants, and garlic, and it is
from 1961-62 to 2015-16 for the rest of the vegetable
groups. Besides, for all the vegetable groups the test-
ing data are from 2016-17 to 2019-20. To select the
suitable model for forecasting vegetable production
data. Several time series models were fitted to the
data as earlier mentioned in previous section.

2.1 Models

2.1.1 Simple random walk model

A random walk model is a non-stationary stochastic
time series model. It’s defined as a process where
the current value of a variable is composed of the
past value plus an error term defined as a white noise
(εt). Suppose εt is a variable with average zero and
variance (σ2). Then Zt is been a random walk

Zt = Zt−1 + εt (1)

Zt − Zt−1 = εt = ∆Zt

The random walk model is simple to use, and it
can easily handle flows around complicated bound-
aries. The method conserves the total circulation.
However, in the random walk model, the computed
solutions are noisy due to the statistical errors. In
flow control studies, the statistical errors could mask
the effects of varying the control parameters. The
statistical errors can also cause symmetric flows to
turn asymmetric erroneously. To reduce the statistical
errors requires a very large number of vortices.

2.1.2 Random walk model with drift

Equation 1 is adjusted as equation 2:

Zt = α + Zt−1 + εt (2)

∆Zt = Zt − Zt−1 = α + εt

Suppose α is a drift parameter. If a as α drift
parameter, is positive (negative), Zt drifts upward
(downward). In this model, the average and vari-
ance, again violating the conditions of (weak) sta-
tionary, increase over time; then, the Random walk
model with drift like the Random walk model with-
out drift would be a non-stationary stochastic time
series model.

2.1.3 Linear trend model

Time series data may show a linear trend which is
determined as follows:

Zt = c + bTt−1 (3)

Suppose c and b are the constant and coefficient
of the linear trend model, respectively. The linear
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trend model attempts to find the slope and intercept
that give the best average fit for all the past data. The
constant and coefficient might be estimated by the
least square method:

b =
∑(Zt − Z̄t)(Tt − T̄t)

∑ (Tt − T̄t)2 (4)

c = Z̄t − bT̄t

The linear trend models are sensitive to outliers.
These could significantly swing your model results.

2.1.4 Quadratic trend model

With a quadratic trend, the values of a time series tend
to rise or fall at a rate that is not constant; it changes
over time; As a result, the trend is not a straight line.
The trend is defined as (Anderson, 2013):

Zt = c + b1Tt + b2T2
t (5)

Suppose c, b1 and b2 are coefficients. Like linear
trend model, the quadratic trend model is sensitive
to outliers, too.

2.1.5 The simple moving average model

One of the easiest time series models is the moving
average, the forecast value of which for the next time
would be the average of the previous values. Because
of this matter, this model is called the moving aver-
age. In case the model is stationary, in many cases the
moving average model might be used and of course,
it would have a good accuracy; otherwise, with the
help of the moving average, the trend of a time series
might be recognized. In this model, the average of the
previous period is used for the current period. In the
same way, new information is used and constantly
updated. Assume there are N observations, and t
observations are used to estimate the average value
as an MA (t), then the forecasting model would be as
the equation 6:

Ẑt+1 =
z1 + z2 + . . . + zt

t
(6)

The main advantage of the simple moving aver-
age model is that it offers a smoothed line, less prone
to whipsawing up and down in response to slight,
temporary price swings back and forth. The simple
moving average model’s weakness is that it is slower
to respond to rapid price changes that often occur at
market reversal points. The simple moving average
model is often favored by traders or analysts operat-
ing on longer time frames, such as daily or weekly
charts.

2.1.6 Simple exponential smoothing model

Exponential smoothing follows the same moving av-
erage smoothing method. Thus, this method can be
considered as a weighted average for time series data,
which, in calculating the average, gives less weight
to more distant data. The weight reduction of dis-
tant past values diminishes its importance in calcu-
lating and predicting future values, and present data
will have a greater impact. The simple exponential
smoothing model can be represented as follows:

Ẑt = αZt + (1− α)Ẑ− t− 1 (7)

Zt is the real value of the series at time t and Ẑt
represents the predicted value of the series at time
t by simple exponential smoothing model. So, the
weighted average between the real value and the pre-
diction at time t for time t + 1 is considered; thus, α
is the smoothing constant, and the range of its value
is between zero and one. On the other side, with
the increase of this smoothing constant, the role of
past observations in calculating and predicting fu-
ture value decreases. The disadvantage of this model
is the greater sensitivity of the simple exponential
smoothing model, so it is more vulnerable to false
signals and getting whipsawed back and forth. The
use of the exponential smoothing model is suitable
for time series without a trend.

2.1.7 Double Exponential Smoothing model

If time series have trends, using the double expo-
nential smoothing method will give better results. It
seems that double exponential smoothing might be
considered as two uses of simple exponential smooth-
ing. Exponential smoothing prediction can be ob-
tained using two smoothing constants (α and β with
values between zero to one) and the following equa-
tions:

Yt = αZt + (1− α)(Yt−1 + bt−1) (8)

bt = β(Yt −Yt−1) + (1− β)bt−1 (9)

Ẑt+j = Tt + (bt × j) (10)

Equation 8 is a smoothed-value Yt, equation 9 cal-
culates the trend value bt, and finally, equation 10
computes the forecasted value for the amount of the
next period predicted j. Y0 and b0 can be estimated
by the least square method.

2.1.8 Exponential trend model

The exponential trend can be adjusted when a time se-
ries begins slowly, and then appears to be increasing
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at an increasing rate such that the percentage differ-
ence from observation to observation is constant. It is
presented as follows:

Ẑ = b0bt
1 (11)

The coefficient b1 is relevant to the growth rate
and b0 is calculated the intercept (Zainal, 2010).

2.1.9 S-curve trend model

In many examples, the nonlinear trend is properly
for time series data. The S-curve trend model (Pearl-
Reed logistic trend model) is one of the nonlinear
trend models and is determined as equation 12 (Weis-
berg, 2005):

Ẑ =
1

1 + eb0+b1t (12)

Suppose b0 and b1 are constants. It should be
noted that in the s-curve model, there is a risk of
missing the turning point of the series.

2.1.10 ARIMA model

Box and Jenkins (1970) developed Autoregressive In-
tegrated Moving Average (ARIMA) method, which
was used by statisticians and economists to extract a
model that would produce and forecast time series.
This method includes four stages of identification, es-
timation, diagnosis, and forecast. Based on its past
values and error sentences, ARIMA method models
static time series. Then, it is a parametric method
and no independent variables are used. ARIMA (p, q)
model is determined as follows:

Zt = φ1Zt−1 + φ2Zt−2 + . . . + φpZt−p

+ Ut + θ1Ut−1 + θ2Ut−2 + . . . + θqUt−p (13)

Ut ∼ iid(0, σ2
u)

If Zt is the original series, for every t, we suppose
that is independent of Zt−1 + Zt−2 + . . . + Zt−p. The
final aim of the proposed Box-Jenkins model is fore-
cast. Therefore, the time series used must be static,
because the instability of the time series makes the
forecast of the future values of the series to be affected
by a random or a definite trend in them and also to
affect the results (Gujarati and Porter, 2004). So, if we
use model ARIMA (p, q) for a non-static time series
accumulated of order d, model ARIMA (p, d, q) will
be obtained. At the identification stage, p and q val-
ues are defined using Autocorrelation Function (ACF)
and Partial Autocorrelation Function (PACF) values.
The limitation of the ARIMA model is that it’s unable
to detect and model the effects of cluster fluctuations
for time series data related to financial data.

2.2 Diagnostic tests

The models fitted to the data will be adequate when
the residuals are random. After fitting various mod-
els, the ACF and PACF of the residuals are estimated
for every model. Three tests are used to examine the
randomness of residual-based on ACF and PACF:

(i) Runs up and down test: computes the num-
ber of times the series runs up or down. This
number is compared to the expected value of a
random time series. When p-values are small,
the time series is not purely random.

(ii) Runs above and below the median test: cal-
culates the number of times the series moves
above or below its median. This number is com-
pared to the expected value of a random time
series. When p-values are small (less than 0.05
if operating at the 5% significance level), the
residuals are not purely random.

(iii) Ljung-Box test: measures a test statistic based
on the first k residual autocorrelations. Like the
above two tests, small p-values indicate that the
residuals are not purely random (Forecasting
Statgraphics, 2017).

As the p-values for all three tests are well above
0.05, there would be no reason to suspect that the
residuals are white noise (Box et al., 2015).

2.3 Accuracy measurement

To measure the accuracy of the proper model, the
following techniques are used:

2.3.1 Root Mean Squared Error (RMSE)

RMSE =

√
∑m

i=1 e2
n+i

m
(14)

en+i is the residual term of (n + i)th the observa-
tion, and m is the number of observations. The best
models have smaller RMSE values, which measure
the variance of the forecasting errors; consequently,
the minimum value of this measure recommends the
best model with minimal forecasting error (Karim
et al., 2010).

2.3.2 Akaike Information Criteria (AIC)

AIC = −2 ln(L̂) + 2k (15)

Where L̂ is the maximum value of the likelihood
function for the model, k is the number of estimated
parameters in the model (Burnham and Anderson,
2002; Akaike, 1974). The model represents the best
model if its AIC value, compared to other fitted mod-
els, is minimal (Tsay, 2013).
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2.3.3 Schwarz Bayesian Information Criteria
(SBIC)

SBIC = −2 ln(L̂) + 2k ln(m) (16)

The model with the minimal SBIC value is defined
well as other fitted models (Tsay, 2013).

3 Results and Discussion

Descriptive statistics such as mean, standard devia-
tion, coefficient of variation, minimum, maximum,
range, standard skewness, and standard kurtosis
of vegetable production data are given in Table 1.
The average production of cucumber and onions are
1076010 and 1036090 tonnes, respectively; so cucum-
bers and gherkins, and also onions have the highest
production in the country, which shows the policies
adopted by the government as well as the higher
consumption of these products in the country. Stan-
dard deviation is one of the scattering criteria that
indicate, on average, how far the data is from the
average. If the standard deviation of a set of data is
close to zero, it shows that the data are close to the
average and have little dispersed; while large stan-
dard deviation shows a significant scattering of data.
The standard deviation value of tomato production is
2159770 tonnes that in comparison with other vegeta-
bles, shows a significant dispersion of the data; but in
general, the standard deviation of all groups is high.
The coefficient of variation represents the scattering
rate per unit of the mean. The coefficient of varia-
tion is lower for garlic, i.e. 28 percent, and higher
for tomatoes, i.e. 91 percent; this indicates that the
production of these data is less and more scattered
from the average values (Statgraphics output).

3.1 Selection of the model

Table 2 compares the results of fitting different mod-
els to the data of the vegetable group’s production.
The model with minimum RMSE, AIC, and SBIC val-
ues have been selected to generate the forecast data.
The best model for eggplants production was model
E, i.e. a quadratic trend model (quadratic trend =
141.399+ 41.6367t +−0.849445t2) to forecast the data.
The best models for cucumbers and gherkins; garlic,
onions, pumpkins, squash, and gourds, and toma-
toes production were ARIMA (4,1,4) with constant,
ARIMA (0,1,2) with constant, ARIMA (2,1,3) with
constant, ARIMA (4,0,0) with constant, and ARIMA
(5,0,4), respectively.

The output of the tests run on the residuals for
determining the suitability of each model for the data
is given in Table 3. An OK means that the model
passes the test. ‘*’, ‘**’, and ‘***’ mean that the model
fails at the 95%, 99%, and 99.9% confidence level,
respectively, which indicates that the residuals are

not purely random. Note that the currently selected
models for cucumbers and gherkins production, i.e.
ARIMA (4,1,4) with constant, eggplants production,
i.e. quadratic trend model, onions production, i.e.
ARIMA (2,1,3) with constant, pumpkins, squash, and
gourds production, i.e. ARIMA (4,0,0) with constant,
tomatoes production, i.e. ARIMA (5,0,4), pass four
tests, and for garlic production, ARIMA (0,1,2) with
constant model passes five tests. Since no tests are sta-
tistically significant at the 95% or higher confidence
level, the current model would be probably adequate
for the data (Statgraphics output).

3.2 Diagnostic examination

The residual’s normal probability plots of vegetable
groups, The estimated ACF, and PACF between the
residuals at different lags and 95% probability limits
around 0 are shown in Fig. 2, Fig. 3, and Fig. 4, re-
spectively. If the probability limits at a particular lag
do not include the estimated coefficient, there is a sta-
tistically significant correlation at that lag at the 95%
confidence level. Except for eggplants production, in
which two of the partial autocorrelation coefficients
are statistically significant at the 95% confidence level,
in the rest of the groups, none of the autocorrelation
coefficients and partial autocorrelation coefficients
are statistically significant; that is the data could well
be completely random. Also, three tests used to test
for residual randomness based on ACF and PACF
show that the residuals are white noise (Table 3).

3.3 Model summary

The summary of the forecasted models is shown in
Table 4. The parameters of the models and their sig-
nificance are given in the table. If the p-value is less
than 0.05, the parameter is statistically different from
zero, at the 95% confidence level in a significant way.
For example in the cucumbers and gherkins, the se-
lected model is an ARIMA (4,1,4) with constant. The
p-value for the AR (4), MA (4), and the constant term
is less than 0.05, so they are significantly different
from zero (Statgraphics output).

3.4 Predicted model

Table 5 shows the forecasted values and real values
in 1000 tonnes from the fitted models. The testing
data sets are vegetable production group data from
2016-17 to 2019-20.

The forecasted data of the vegetable production
groups, based on the fitted models for the next eight
years (2020-21 to 2027-28), are given in Table 6. For
these periods, 95% prediction intervals for the fore-
casted data is shown. Assuming that the fitted models
are appropriate for each vegetable production group,
these prediction intervals show that the actual data



Latifi and Shabanali Fundam Appl Agric 6(4): 367–382, 2021 373

Table 1. Summary Statistics for vegetables production

Variables Cucumbers
and gherkins

Eggplants Garlic Onions Pumpkins, squash,
and gourds

Tomatoes

Mean 1076010 519050 53259.1 1036090 219735 235523
Standard deviation 699962 195751 14950.5 694194 148384 2159770
Coefficient of variation 65.05% 37.71% 28.07% 67.00% 67.53% 91.70%
Minimum 200000 150000 16708 100000 53174 110000
Maximum 3026090 1162850 84073 2426050 807500 6362900
Range 2826090 1012850 67365 2326050 754326 6252900
Standard skewness 3.7826 1.95687 -1.62331 0.790582 6.49434 1.54639
Standard kurtosis 2.26593 3.36201 1.06272 -1.81694 7.5165 -2.07597

Table 2. Selecting the best model based on criteria

Model Selection
criteria

Cucumbers
and
gherkins

Eggplants Garlic Onions Pumpkins, Squash,
and gourds

Tomatoes

A RMSE 0.327451 0.200827 0.150321 0.202489 0.112784 0.372038
AIC 2.53982 1.06049 5.42037 1.06214 9.45094 1.1838
SBIC 2.5598 1.06049 5.42037 1.06214 9.45094 1.1838

B RMSE 0.330104 0.203565 0.152652 0.202158 0.113758 0.364489
AIC 2.54482 1.06986 5.51782 1.0652 9.50204 1.18309
SBIC 2.54834 1.07453 5.56453 1.06872 9.53725 1.18661

C RMSE 0.699962 0.195751 0.149505 0.694194 0.148384 2.15977
AIC 2.69515 1.06204 5.47615 1.31194 10.0335 1.53894
SBIC 2.69867 1.06671 5.52286 1.31546 10.0687 1.54246

D RMSE 0.440998 0.144526 0.141833 0.192988 0.146831 0.67653
AIC 2.60614 1.00803 5.43746 1.0593 10.0464 1.31017
SBIC 2.61318 1.01737 5.53087 1.06635 10.1168 1.31722

E RMSE 0.442613 0.134438 0.140819 0.193683 0.138672 0.545767
AIC 2.61026 1.00022 5.48979 1.06341 9.96592 1.27061
SBIC 2.62082 1.01423 5.62991 1.07398 10.0716 1.28117

F RMSE 0.490624 0.15671 0.146481 0.415435 0.151112 1.62975
AIC 2.62747 1.02421 5.50196 1.21264 10.1038 1.48602
SBIC 2.63451 1.03355 5.59537 1.21969 10.1743 1.49306

G RMSE 0.63577 0.147144 0.14585 0.613457 0.151865 2.22668
AIC 2.6793 1.01162 5.49332 1.2906 10.1138 1.54843
SBIC 2.68634 1.02096 5.58673 1.29764 10.1842 1.55548

H RMSE 0.364595 0.174721 0.171267 0.214914 0.110191 0.394705
AIC 2.5647 1.0393 5.74795 1.07744 9.43833 1.19902
SBIC 2.56822 1.04398 5.79466 1.08096 9.47354 1.20254

I RMSE 0.32707 0.159819 0.148083 0.196818 0.104178 0.36688
AIC 2.54298 1.02148 5.45704 1.05985 9.3261 1.1844
SBIC 2.5465 1.02615 5.50374 1.06337 9.48483 1.18792

J RMSE 0.361121 0.168742 0.153777 0.198718 0.11046 0.34823
AIC 2.56278 1.03234 5.5325 1.06177 9.4432 1.17396
SBIC 2.5663 1.03701 5.57921 1.06529 9.47842 1.17748

K RMSE 0.334299 0.148689 0.149102 0.195713 0.105266 0.338279
AIC 2.55074 1.0137 5.53742 1.06211 9.38077 1.17155
SBIC 2.55778 1.02305 5.63084 1.06915 9.45119 1.1786

L RMSE 0.386609 0.175027 0.157487 0.199876 0.116126 0.347222
AIC 2.57642 1.03965 5.58018 1.06293 9.54325 1.17338
SBIC 2.57995 1.04433 5.62689 1.06645 9.57847 1.18704

M RMSE 0.265133 0.147982 0.101486 0.15814 0.0965093 0.27705
AIC 2.52811 1.01275 5.10099 1.03834 9.30877 1.15535
SBIC 2.53982 1.02209 5.24111 1.05947 9.36131 1.1769

Models: (A) Random walk, (B) Random walk with drift, (C) Constant mean, (D) Linear trend, (E) Quadratic trend, (F) Exponential trend,
(G) S-curve trend, (H) Simple moving average of 2 terms, (I) Simple exponential smoothing with alpha, (J) Brown’s linear exponential
smoothing with alpha, (K) Holt’s linear exponential smoothing with alpha and beta, (L) Brown’s quadratic exponential smoothing with
alpha, and (M) ARIMA
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Table 3. Tests to adequate the best model for data

Model Diagnostic
test

Cucumbers
and
gherkins

Eggplants Garlic Onions Pumpkins, squash,
and gourds

Tomatoes

A RUNS OK OK OK OK OK OK
RUNM OK OK OK OK OK OK
AUTO OK * OK * OK OK
MEAN OK OK OK OK OK OK
VAR *** ** * *** * ***

B RUNS OK OK OK OK OK OK
RUNM OK OK OK OK OK OK
AUTO OK * OK * OK OK
MEAN OK OK OK OK OK OK
VAR *** ** * *** * ***

C RUNS *** OK OK *** *** ***
RUNM *** OK OK *** *** ***
AUTO *** OK OK *** *** ***
MEAN *** *** * *** *** ***
VAR *** OK * * *** ***

D RUNS *** OK ** * *** ***
RUNM ** OK OK *** *** ***
AUTO *** OK OK OK *** ***
MEAN OK OK OK OK * OK
VAR *** ** OK ** *** OK

E RUNS *** OK OK * *** ***
RUNM *** OK OK ** *** ***
AUTO *** OK OK OK *** ***
MEAN OK OK OK OK ** OK
VAR *** *** OK *** OK ***

F RUNS *** OK ** OK *** **
RUNM *** OK OK *** *** ***
AUTO *** OK OK *** *** ***
MEAN OK OK OK OK ** OK
VAR *** ** OK *** *** ***

G RUNS *** OK OK ** *** ***
RUNM *** OK OK *** *** ***
AUTO *** OK OK *** *** ***
MEAN *** * OK *** *** ***
VAR *** *** * *** *** ***

H RUNS ** OK OK OK * OK
RUNM ** OK OK OK OK *
AUTO OK OK * *** OK OK
MEAN OK OK OK OK OK OK
VAR *** ** ** *** OK ***

I RUNS OK OK OK OK OK OK
RUNM * OK OK OK ** OK
MEAN OK OK OK * OK OK
AUTO OK OK OK OK OK OK
VAR *** ** OK *** ** ***

J RUNS *** OK OK OK * OK
RUNM * OK * * ** OK
AUTO OK OK OK OK OK OK
MEAN OK OK OK OK OK OK
VAR *** ** OK *** ** ***

K RUNS OK OK OK OK OK OK
RUNM OK OK OK OK ** OK
AUTO OK OK OK OK OK OK
MEAN OK OK OK OK OK OK
VAR *** *** OK *** ** ***

L RUNS *** OK OK OK * OK
RUNM ** OK OK *** *** OK
AUTO OK OK OK OK OK OK
MEAN OK OK OK OK OK OK
VAR *** ** OK *** * ***

M RUNS OK OK OK OK OK OK
RUNM OK OK OK OK OK OK
AUTO OK OK OK OK OK OK
MEAN OK OK OK OK OK OK
VAR *** ** OK *** *** ***

RUNS = Test for excessive runs up and down, RUNM = Test for excessive runs above and below median, AUTO = Ljung-Box test for
excessive autocorrelation, MEAN = Test for difference in mean 1st half to 2nd half, VAR = Test for difference in variance 1st half to 2nd
half, OK = not significant (p≥0.05), * = marginally significant (0.01<p≤0.05), ** = significant (0.01<p≤0.01), and *** = highly significant
(p≤0.001)
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Figure 2. The residual normal probability plots of vegetables groups
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Figure 3. The Residual Autocorrelations Function plots of vegetables groups
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Figure 4. The Residual Partial Autocorrelations Function plots of vegetables groups
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Table 4. Models summary

Parameter Estimate Standard error t P-value

Cucumbers and gherkins

Forecast model selected:
ARIMA(4,1,4) with constant

Estimated white noise standard
deviation = 0.265512

AR(1) -0.0066085 0.0970039 -0.0681262 0.945962
AR(2) 1.1465 0.09604 11.9378 0
AR(3) 0.245632 0.100718 2.4388 0.018406
AR(4) -1.06523 0.113816 -9.35926 0
MA(1) 0.162863 0.0398128 4.09071 0.00016
MA(2) 1.46066 0.0422342 34.5847 0
MA(3) 0.169574 0.0521866 3.24938 0.002093
MA(4) -0.813736 0.0464328 -17.525 0
Constant 23.8552 2.09761 16.7316 0

Eggplants

Forecast model selected:
Quadratic trend =
141.399 + 41.6367 t + -0.849445 t2

Constant 141.399 78.8323 1.79367 0.084075
Slope 41.6367 11.7226 3.55184 0.001429
Quadratic -0.849445 0.366915 -2.3151 0.028448

Garlic

Forecast model selected:
ARIMA (0,1,2) with constant

Estimated white noise standard
deviation = 0.119247

MA(1) 0.510106 0.1577 3.23466 0.003306
MA(2) 0.648711 0.183469 3.5358 0.001549
Constant 0.30751 0.0792795 3.87881 0.000641

Onions

Forecast model selected:
ARIMA (2,1,3) with constant

Estimated white noise standard
deviation = 0.163794

AR(1) 0.120149 0.115138 1.04353 0.301532
AR(2) -0.765763 0.118271 -6.47465 0
MA(1) 0.638866 0.10494 6.08789 0
MA(2) -0.632573 0.107869 -5.86425 0
MA(3) 0.889293 0.0570825 15.5791 0
Constant 63.2596 2.27782 16.8764 0

Pumpkins, squash, and gourds

Forecast model selected:
ARIMA(4,0,0) with constant

Estimated white noise standard
deviation = 0.967709

AR(1) 0.588297 0.128708 4.57078 0.000029
AR(2) 0.0945256 0.140407 0.673225 0.503675
AR(3) 0.421584 0.140418 3.00235 0.004052
AR(4) -0.318356 0.128827 -2.47119 0.016652
Constant 45.6083 56.1648 3.7955 0.000375

Tomatoes

Forecast model selected:
ARIMA(5,0,4)

Estimated white noise standard
deviation = 0.278162

AR(1) 1.06818 0.147419 7.24582 0
AR(2) 0.15312 0.232498 0.658586 0.513183
AR(3) 0.547105 0.212427 2.57549 0.013014
AR(4) -0.286516 0.215727 -1.32814 0.190162
AR(5) -0.518051 0.173101 -2.99276 0.004287
MA(1) 0.630635 0.0620367 10.1655 0
MA(2) 0.419127 0.0740804 5.65773 0.000001
MA(3) 0.627165 0.0279604 22.4305 0
MA(4) -0.741904 0.0313519 -23.6638 0

Table 5. The forecasted and actual values of the vegetables production (‘000’ t) in 2016-17 to 2019-20

Variables 2016-17 2017-18 2018-19 2019-20

Actual Forecasted Actual Forecasted Actual Forecasted Actual Forecasted

Cucumbers and gherkins 1681.78 1511.78 751.16 1001.76 697.426 579.911 871.692 1100
Eggplants 669.853 646.343 655.046 641.26 663.352 634.479 670.158 625.998
Garlic 58.835 59.3973 57.871 57.916 58.226 58.5662 58.582 58.7362
Onions 2400.59 2254.22 1700.94 2023.91 1564.44 1906.54 1779.46 2031.16
Pumpkins, squash, and gourds 178.004 199.2 182.762 188.665 186.919 180.798 191.077 191.402
Tomatoes 5828.56 5899.87 4894.96 5476.82 4661.13 5179.3 5248.9 4704.95
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Figure 5. Time series forecast plots for vegetables production data (‘000’ t)
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Table 6. The predicted values of the vegetables production groups (‘000’ t) based on the selected models for
2020-21 to 2027-28

Variable 2020-21 2021-22 2022-23 2023-24

Cucumbers and gherkins Forecast 540.23 1853.83 1723.37 2801.3
95% Limits 6.66, 1073.8 1160.24, 2547.42 976.83, 2469.9 2024.66, 3577.93

Eggplants Forecast 615.819 603.94 590.363 575.087
95% Limits 296.05, 935.59 272.41, 935.48 244.93, 935.8 213.53, 936.64

Garlic Forecast 59.1889 59.5965 59.904 60.2115
95% Limits 34.68, 83.70 32.30, 86.89 32.33, 87.48 32.37, 88.06

Onions Forecast 2204.69 2299.4 2272.24 2259.72
95% Limits 1876.01, 2533.37 1934.64, 2664.16 1895.58, 2648.9 1875.56, 2643.88

Pumpkins, squash, and gourds Forecast 196.068 199.635 202.635 205.517
95% Limits 2.05, 390.08 -25.46, 424.73 -38.15, 443.42 -74.47, 485.49

Tomatoes Forecast 4399.59 3296.7 2469.91 2035.09

Variable 2025-26 2026-27 2027-28 2023-24

95% Limits 3840.88, 4958.29 2686.85, 3906.54 1849.78, 3090.05 1404.76, 2665.41
Cucumbers and gherkins Forecast 2024-25 2025-26 2026-27 2027-28

95% Limits 3344.2 3168.98 4220.18 3021.31
Eggplants Forecast 2556.2, 4132.2 2367.41, 3970.54 3332.06, 5108.3 2040.73, 4001.88

95% Limits 558.112 539.438 519.065 496.993
Garlic Forecast 178.19, 938.03 138.88, 939.99 95.62, 942.52 48.42, 945.56

95% Limits 60.519 60.8265 61.134 61.4415
Onions Forecast 32.40, 88.63 32.44, 89.21 32.49, 89.78 32.53, 90.35

95% Limits 2342.27 2425.04 2435.03 2436.1
Pumpkins, squash, and gourds Forecast 1955.28, 2729.25 2028.49, 2821.58 2030.4, 2839.65 2030.86, 2841.34

95% Limits 207.411 208.927 210.258 211.065
Tomatoes Forecast -83.36, 498.19 -87.85, 505.70 -95.94, 516.46 -97.43, 519.56

95% Limits 375.912 -1159.31 -2482.91 -4486.66
-445.03, 1196.86 -2027.08, -291.55 -3395.89, -1569.93 -5549.07, -3424.25

at a selected future time are within this distance with
95% confidence. Based on Table 6, the forecast data
in the cucumbers and gherkins show that production
values do not increase uniformly in the next eight
years. In the third to fifth groups, i.e. garlic, onions,
pumpkins, squash, and gourds, an increase in the
amount of production of these groups is predicted in
the future. These findings are consistent with the
results of Amin et al. (2014), Khayati (2015), and
Maghrebi et al. (2020) studies. But they are despite the
other studies such as Arivarasi and Ganesan (2015)
and Fauziyanti et al. (2020). On the other hand, in the
eggplants, and tomatoes, the decrease in production
is predicted in the next eight years, especially in the
tomatoes. These results are in line with other stud-
ies carried out by Arivarasi and Ganesan (2015), and
Fauziyanti et al. (2020). So, decreasing the production
of some vegetables could be challenged in the future.
These forecasted data for vegetable production can be
a good solution to ensure the food security of people
in the country. On the other hand, if the country is
not able to import, underproduction might lead to
more production gaps in the country for a particu-
lar commodity, and therefore might lead to serious
food insecurity, especially in emergency conditions
such as floods, earthquakes, etc. The proper design
and strategy lead to improved production decisions
(Zinyengere et al., 2011; Goodwin et al., 2010). In most
studies i.e. Amin et al. (2014), Arivarasi and Ganesan
(2015), and Khayati (2015), the ARIMA model was

recognized as the best model for the data. In Fig. 5,
the actual and forecasted data are shown for each
vegetable production group with a limit plot of 95%
(Statgraphics output).

4 Conclusion

The forecast data in the cucumbers and gherkins
record that production values do not increase reg-
ularly in the next eight years. In the garlic, onions,
pumpkins, squash, and gourds, an increase in the
production of these groups is forecasted in the future;
besides, the predicted data show a relatively large
decrease in production in the eggplants and tomatoes
for the next eight years, particularly in the tomatoes.
The predicted data show a worrying decline in the
production of these two products. If proper plan-
ning is not done, the production reduction of these
products would increase prices and imports of these
products in the future. Therefore, by using the results
of this research, it is suggested that the government
and the Ministry of Agriculture, increase the amount
of production and control its price with proper plan-
ning for the production of vegetables, so that the price
increases and imports are prevented. Due to the need
of using annual data in this research and the need
to study many observations, the disability to access
appropriate data of other effective variables on an an-
nual at the large scale level was one of the limitations
of the study. Also, the study was carried out on a
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large scale and over the whole country. So, the local
climatic variations in the country could not be taken
into account. Regional climatic variations could be
studied in the future. The results of this research can
be useful for the government, the Ministry of Agri-
culture, and researchers. They can be able properly
plan in future vegetable production along with other
corps production as well as further studies.
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